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NASA TT F-10,248

DAMPING OF VIBRATIONS OF THE BLADING
' OF AN OPERATING TURBINE

J. L. Deschamps

ABSTRACT

An attempt to provide a rational explanation of some
results obtained from wind-tunnel experiments on turbine
blading. A distribution of aerodynamic singularities, char-
acteristic of the stability of a viscous flow, supplies the
aerodynamic forces in a system of blading, starting from the
velocity diagram. The method of concentrated masses makes
it possible to express’ the mechanical forces developed dur-
ing vibration. The transient aerodynamic regime features a
cyclical deformation of the velocity diagram, 'which modifies
the expression for the circulation in the steady-state re-
gime., With the alternate detachments and reattachments at
the profile points, a supplementary term appears which can,
in agreement with certain experimental results, change the
sign of the damping coefficient.

Synopsis

This paper may not appear to have any particularly remarkable scientific
character for the informed reader. It did result as a plausible explanation
of some wind-tunnel experiments for which no satisfactory interpretation was
found immediately. Other work will certainly have to be carried out to estab-
lish the relation between this result and certain surprising experiences which
1ndustry has encountered occasionally on the subject of vibrations in turbines.
However, it may still be of interest to attempt such a synthesis in regard to
a problem which is generally treated in its separate elements.

‘'The six chapters of this study are organized as follows:
Chapter 1 expounds the essential principles and gives a conclusion;

Chapter 2 describes the mathematical model selected to symbolize the
flow of fluid in axial-flew furbines;

Chapter 3 is an analyS1s of the forces generated within the blading of a
turbine;
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Chapter 4 contains an approach to the solution of the equations stated in
the preceding chapters;

Chapter 5 outlines, from the general solutions obtained, the mathematical
form of the damping where the parameters are the state of the gas, the
geometry of the blading, and time;

Chapter 6 is the numerical application to a particular casé actually ex-
perimented and specifies to what extent the proposed theory represents the
observed phenomena, :

o .



NOTATIONS

(Given in order of appearance in text)

‘

Theoretical potential function representing flow in blading developed
along the plane xOy (fig. 1).

Curl of the velocity vectof around a blade profile.

Complex affix X-iY (fig. 2).

Developed blade pitch or distance between two consecutive vortices. -
Relative wvelocity at blade intake.

Relatiye velocity at b}gde discharge.

Wy + Wy

.

(geometric) mean
2

(W, Oy) angle (figs. 4, 5, 6).

Order number of a vortex counted positively from Oy (fig. 2).

Number of developed blades.

Potential function representing flow generated by an isolated vortex.

_ Component along Ox of aeerodynamic velocity deduced from @O.

Component along Oy of aerodynamic velocity deduced from @O.

~Polar radius in XOY coordinates.

Polar azimuth ih XO0Y coordinstes,

Approximate potential function representing flow in the developed
blading.

Function of z defined by the equation




'I:Il |
e

&

Vectorial modulus defined by equation

Tr
1.'-.

A=

Scalar defined by the relation
},, == g—2Asin (9—a),

Scalar defined by the relation

ao%cos[2)\-cos(0—a)(.

Scalar defined by the relation

by = sin | 2 + cos (0 — «) |.

Component along OX of aerodynamic velocity deduced from @S.
Component along OY of aerodynamic velocity deduced from @S
Inclination of absolute velocity at intske along axis of turbine.

Inclination of relative velocity Wl (theoretically at infinity up-
stream) along axis of turbine. .

Absolute aerodynamic velocity at intake (theoretlcally at infinity
upstream).

Deviation of flow due to blades:

Angle defined by one of the rélations
A = arc cos a, == arc sin b,

Flow volume of fluid in blading channel' constituted by two consecu-
tive blades,

Specific weight of fluid.
Height of blade (distance along Ox between bottom and top of blade).
Aerodynamic force aﬁplied to blade.
‘Component of F along Oy.

Component of F along Ou.




y(x, t)
£(x)

h(t)

Width of rotor taken parallel tc Ou axis.

Frequency of blade vibration.

Pseudo-amplitude of real blade vibration (assumed to vary slowly in

time).
Mean duration of stay of fluid molecule in blading.
Distance from point of detachment to tip of profile.

Angulsr spread between W2 and the tangent to the exterior blade
curve.

Chord of blade profile at profile tip.
Wm Cd

Reynolds number defined by Re =

Wm Dk if Re depends on 1.
v

.if Re is independent of 7, or
by Re =
Hydraulic dismeter defined by

4 vcos !
2(I 4+ tcosy)’

Dp =
Kinematic viscosity.

Function of Reynolds number Re.

Phaseshift between blade oscillation and excitation by the fluld
(negative and greater than -90°).

Elastic modulus of metal utilized for blades.

Moment of inertia of the straight section of the blade (assumed
as constant).

Function of x and of time t obtained from the product of a function
of x, f(x) and of a function of %, h(t).

Function of x defining the form of the elastic line at a given
instant t.

Function of time defining oscillation of a point of the elastlc
line of abscissa x.

Constant introduced by separation of the variables x and t according
to f(x) and h(t).

Radius along which blades are mounted (blade bottom).

g



Order number of the concentrated mass of the total blade mass at
several points of the elastic line where the number 2 n' + 1 may
increase as a function of the degree of precision desired in the
evaluation of the elastic forces.

Whole number whose definition results from that of q'.

Frequency of the rotation of turbine.

Rate of rotation of turbine in revolutions per second.

Intermediate grouping defined by

_ . /Prwt-R’
o ERE

Constant relasted to K by

Weight of blade.

Mach number.

Aerodynamic moment in the axeg. yoOx.
Component of Fy independent of time.
Component of Fy which is a function of time.
Component of vy independent of time.

Amplitude of the alternate component of ¥y.

Angle formed by the vector radius v, and the tangent at the point of
order n.

Angle formed by the vector radius Vg and the tangent at the point of
order n - 1.

Natural frequency of each cascade blade
in the absence of aerodynamic forces.

Coefficient of the term for vibratory inertia.
Coefficient of the term for vibratory damping.

Coefficient of the term for vibratory elongation.

.'6



Constant term of the vibratory equation.

Coefficient of interaction (or influence) between the vibratory am-

plitudes of two adjacent blades.
Coefficient of the term for self-excitation of the fluid.

Number of blades; according to & preceding notation,
No=2N+1.

Natural frequency of each cascade blade in the absence of
aerodynamic forces.

Stray-excitation frequency.

Component of b which is a function of the incident relative
velocity. ‘ '

Component of b which is independent of the incident relative
velocity.

Characteristic damping of the material.
Apparent damping in the absence of detachment.

Coefficients of integration.

Maximum relative to y at instant t;

Angle formed by the tangent to the profile and the tangent to the

frame at the profile tip.
Pressure number,

In contrast to W,, this designates a reference velocity in the

calculations of Chapter 6.

Notation adopted by the researchers to designate V.




Designates, in Chapter 6, the angie formed with the axis or by the
relative velocity at the blade discharge (notation derived from
experimentation).

Notation adopted by the researchers to designate m.

True damping.




CHAPTER 1. GENERAL REMARKS

In 1959, it was stated in reference 5 that the damping of aeredynamie 12*
vibrations was still insufficiently understood and that more research would
be required to improve our knowledge of the subject. Nevertheless, investiga-
tions prior to 1959 by either considering the fluids as nonviscous and the flow
as exempt from detachment (refs. 9, 18, 33), or by introducing vortical sin-
gularities (refs. 38, 4L0) and by outlining a mechanism of the intervention of
detachments (ref. 4O) have shown that such research would have to go beyond
the case of combined flexure and torsion which was carefully investigated in
regard to airfoils (refs. 23, 44). Incompletely explained facts (refs. 1, 13,
16) did furnish some experimental support. Since 1959, ideas related to those
developed below have been experimented (refs. 21, 49) and the question of
coupling between blades was reexamined (ref. 19).

We know that the use of a distribution of aerodynamic singularities makes
it possible in a general manner to describe fluid flow in the blading of a
turbine (refs. 30, 32, 36, 37, 45, 48). This method was adapted to the spe-
cific problem of the evaluation of aerodynamic stresses in steady state on
the basis of the velocity diagram schematically representing the operational
behavior of the blading under consideration.

Regarding evaluation of the wmechanical stresses, this is limited to
bending stress, where the method of concentrated mass has been adopted which
makes it possible to solve the problems strictly. Provided a distribution of
mass of sufficiently large number is selected, it is possible to account for
the centrifugal forces, the inertial forces, and the elastic reactions devel-.
oped simultaneously during the vibratory behavior of the blading (refs. 23, 43).

1.1 Investigation of Damping Without Aerodynamic Detachment

Specifically, the analytic representation of flow is bidimensional and
constructed by means of a family of identical vortices each centered on a
cascade profile adjusted in conformity with the datum of the velocity diagram.
. The elementary vortex of this family is numerically characterized by the [é
expression of the circulation y of the velocity vector around the respective
profile as a function of

(1) the cascade pitch 7;

¥Numbers given in margin indicate pagination in original foreign text.
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(2) the angle of inélination @ in relation to the cascade with the
geometric mean Wy, 'of the relative velocities at 1nf1n1ty both upstream and
downstream;

(3) the specific weight of the fluid mg;

(4) the expansion (or compression) Ap across the cascade

This emphasizes the predominant role of the viscosity forces which gener-
ate circulation within the boundary layer. The application of the Euler
theorem to the datum of the velocity diagram makes it possible, moreover, to
reproduce the results obtained by the Blasius integration and confirms that
the combined vortices are taken into account while neglecting the influence of
the free vortices released in the wake of the profiles, i.e., that the aero-
dynamic problem is treated for infinitely long blades.

By admitting the different approximations above as a whole, we then con-
tinue from formulation of an equation for steady state to the formulation of
an equation for an alternate transient regime on the following reasoning:

(a) Dblade vibration is expressed by an oscillation of the profile in
relation to a system of axes (0) linked to the turbine rotor; .

(b) +the absence of detachment implies that any fluid molecule M reaching
the leading edge remains in contact with the profile and consequently its
velocity in the system of axes (0) is the geometric sum of the profile velocity
of flow and velocity of oscillation;

(¢) +the trajectory of a molecule M is therefore different in alternate
transient regimes from that in a steady regime, and everything takes place
in regard to the conditions at the limits to infinity upstream and downstream
as if the angle of fluid deviation inducing expansion or compression, i.e.,
the angle at the apex ¥ of the velocity diagram, underwent a variation Ay whose
amplitude can be calculated as a function of time;

(@) recourse to the continuity of circulation y makes it possible to ex-
press, on the basis of these considerations, the oscillation of y as a function
of time from which we can deduce the expression of the aerodynamic stresses in
an alternate transient regime; when YO designates the mean value of the circula-

tion vy calculated for steady regime, we then use Yy in the form

. . d
Y=Y0+Y1'sm(°)l+l)=Yo+g‘$Aq’°.

[
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Ay is expressed as a function of the displacement of the profile between the
instant t when the molecule M encounters the leading edge and the instant

t + td when it leaves the trailing edge, using a very simple geometric infini-
tesimal analysis

Ay =—kidylia

This supposes that, at a given instant t, each molecule participating in the [Z
‘constitution of the boundary layer behaves in regard to the pressure stresses
on the profile as if it were to undergo the fluid deviation Ay(t, t + td) dur-
ing its contact with the profile. However, at the instant t + At, certain of
‘the molecules active at the instant t have lost contact with the profile where-
as others are now in contact with it, and the new grouping unsnimously behaves
as if each individual were to undergo the deviation AY(t + At, t + At + td)
while it is in contact with the profile. We therefore adopt the postulate that
all the particles constituting the boundary layer at a given instant become a
solid mass due to the action of viscosity.

Admitting further that the position of the profile in relation to the axes
(0) can be defined by a sinusoidal function of time

Y= (usinwl

where the derivative é% [(y)M] is limited upward by a negligible quantity, we

proceed by identification

Yfﬁn@l+n=h—h§$%@ﬂﬁﬂ@“4dﬂ—dh&0h»

‘and consequently

c e
Y=Yo+F(T9Wm:AP)'o‘)‘7‘~':'cos<ml+§W‘;‘ ,

where cyq designates the chord of the profiles.

, We finally retain the expression of the resultant of the serodynamic
stresses in steady regime in the second member of the equation for the
vibrations, In the first member, we show two terms which together represent
the oscillation of the aerodynamic resultant around its mean value as a func-

tion of y and %%.' The term in y introduces a variation of the characteristic
frequency. The term in %% introduces a damping increasing specifically with
the relative pitch-g;, at the ratio of specific weight of the fluid and of the

d .
blade material as well as with the mean velocity W,+ Such an indication of

}._)
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tendency entirely conforms with experience for cases of slight incidence and
moderate flow velocities. The numerical values obtained are greater than those
currently observed but the orders of magnitude are comparable.: This demon-
strates in addition that neither the interaction between adjacent blades nor
the characteristic damping of the material are predominant.

The actual investigation of the damping is the subject of Chapter 5.
Chapters 2 and 3 make it possible to establish a logical base of the investiga-
tion for the transient regime according to a new process which gives a physieal
meaning to the nonuniform potential functions (refs. 4, 12, 20, 47). Chapter k4
is intended to show, prior to investigation of the damping, that the interac-
tion between adjacent blades is not systematically the cause of instabilities

(ref. L49).

1.2 Investigation of Dampiﬁg in the Presence of Aerodynamic Detachment

The reasoning explained above applies integrally, with this difference: [é
the molecule M loses contact with the profile before reaching the trailing
edge. This thickens the wake and reduces the angle V¥, consequently the circula-
tion v and specifically the damping previously demonstrated.

A, Steady-state Regime

The perfect detachment can be defined as cancellation of the angle ¥ it-
self considered as a first order infinitely small angle (slight incidence). 1In
this circumstance, the molecule M exits from the blading at a point '
staggered in relation to the profile of a quantity

(by) total permanent detachment =q%%£gd;
T

which is an expression in which 6; designates the inclination

of the profile chord in relation to the cascade's perpendicular
direction. : :

The detachment to be considered when instead the flow is almost perfect
is one where the molecule M loses contact with the profile only at a small
distance ad,from the profile tip. It therefore leaves the blading at a point

staggered in relation to the profile of & quantity

(Ay) partial permanent detachment =;%%égﬂ;
' 1

.

[
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u

designating the angle between the relative velocity at the profile tip
(downstream at infinity), as obtained in nondetached flow, and the
relative velocity at the point where the molecule M loses contact
with the profile in detached flow.

We then introduce the turbulence in the channel constituted by two con-
secutive blades by writing that the ratio between the two quantities formulated
above depends only on the Reynolds number assigned to the idea of a hydraulic
diameter Dh

vy

Re =

(wvhich allows us to introduce the kinematic viscosity of the fluid v). It is
then shown that the number Re is the product of two quantities, one of which
depends only on the velocity diagram, on the profile and on the fluid and ‘[2
where the other characterizes the cascade effect (relative pitch and elonga-
tion of the blades). We therefore have

aq°ep il Y|

cos 0, ~ cos 0, *dp (Re)

OI‘.
aa*ep = a| §]+dp (Be).

The function d (Re) depends on the profile form. We propose to determine

this during wind- tunnel experimentation of the cascade and under permanent flow.

B. Alternate Transient Regime

The oscillating motion of the blade has a tendency both to reattach the de-
tached flow lines and/or to aggravate the detachment (refs. 38, 40, 49) in such
manner that the double amplitude of the fluid oscillation is less than the blade
oscillation amplitude. At least approximately, we propose to take into account
this phenomenon and, specifically, the local acceleration in the fluid at the
points for which the profile oscillation velocity in relation to the axes (0)
is zero. We will do so by stating that there is complete cancellation of de-
tachment when elongation is maximum and in a direction opposite to the fluid ~
deviation, and where the mean point of fluid oscillation at the blading exit
must necessarily be the point at which the molecule M leaves the blading in
partially detached steady flow.

This reasoning and the supplementary hypothesis lead us to adopt, in order
to define the oscillation of the circulation, the expression

(y).;: — C;io'sl‘;ll;_l . dp (Re) { sin w ¢

[
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in contrast to the sinusoidal function
Y = () sin ol

which defines the oscillation of the profile and was utilized to express the
oscillation of ¥ in the absence of detachment.

Finally, in the equation for the vibrations and in the second member, we-
show a new term dependent on time having the form

" kg cos <m L+ 2"’\5‘1 )
m

which may give rise to an asymptotic vibration maintained by the fluid, so

that we may observe an apparently negative damping coefficient and, in par- Z&g
ticular, a rupture due to blade fatigue. By analogy with the behavior of a
plane wing, it is clear that the "instabilities," which the preceding formules
cannot show except by possible discontinuity of the function 4 (Re), correspond

to the generalized loss of 1ift responslble for the stalling in aircraft (refs.
1, 28).

1.3 Results Obtained

We then state that "for a given flow velocity and at the end of an invari-
able interval starting with the instant of release into the wind, there corre-
spond successively, to increasing values of the incidence, positive, zero, and
finally negative values of the damping coefficient; under the same conditions,
the same phenomenon, due to the progressive increase of turbulence in the blade
cascade channels, is produced under constant incidence if the incident velocity
is increased."”

In conclusion, the reader is asked to remember that in the field of blade
vibration as well as in the better known flight mechanics and mechanics of the
displacement of objects on dry ground, the 1mpercept1ble role of friction deter-
mines the trend of the observable phenomena.

'_J
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CHAPTER 2. INVESTIGATION OF FLOW

2.1 Analytical Representation

Figure 1 shows the xyu axes selected for evaluating the stresses. Zil
The direction of the u axis parallel to the axis of machine rotation is that
of the flow. The x axis is radial in accordance with the blade elongation. The
Yy axis is oriented along the tangential velocity of the rotor; the trihedron
Xyu is direct; the Xy plane is that of the rotor and the yu plane is a meridian
plane of the machine; the xy and yu axes are also direct.

In developing the rim which carries the blades, we obtaln a cascade and a
plane in which we consider, holding certain restrictions, that the bi-dimensional
flow is representative of the real flow, and such a flow can be calculated by
means of nonuniform aerodynamic potential functions in symbolizing the cascade
as a succession of identical vortices each representing a cascade profile.

The complex plane coincides with the flow plane; the.OX axis of this plane
is directed in accordance with the geometric mean Wy of the relative velocity

at the intake of the blading W, and of the relative velocity at the exit of the

Figure 1

[t
(9]
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Figure 2

blading W The line of vortices is inclined &t the angle @ on the axis /12

o
Ox; the axis OY is oriented as is axis Oy so that the positive direction of
rotation in the complex plane is the negative direction in the plane yOu. The
velocity diagram which constitutes the initial datum is inscribed in this
geometric configuration as indicated in figure 2,

The corresponding potential function is written as

: n=+4nN
lc

0=Wm-z—-2—g LZ+ E L(z——i-n-nr-cla) : (l)

n==—N

where 2z 1is the affix of the complex variable X + 1iY;
(y) is the circulation of the relative velocity vector around a vortex;
n is the order number of the vortex counted positively along OY and
negatively in the inverse direction; ’
(t) is the distance between two consecutive vortices;
2N+ 1 is the number of profiles of the cascade.

16



2.2 Examination of this Representation

A, Examination of the Isolated Vortex and Significance of the Sign of ()

Exploration of the field of velocities genérated by an isolated vortex
makes it possible to better understand the result obtained by geometric com-
position for the whole cascade.

The complex potential linked ta the vortex of order (0O) is given by /13
the formula i

¢h==——%;flg.

The corresponding complex velocity is

_ iy L.y

where W, and Wy are the components of serodynamic velocity generated by the .
, vortex of order (0);
r and 8 are the polar coordinates of the point at which we calculate

the aerodynamic velocity.

— Y 'sinb " yrcosf
Wx.-— 27"’ H W'h———————zn.r_

This aerodynamic velocity is perpendicular to the vector radius OM (fig. 3) and,
by using the corresponding circulation along the circumference (0) with radius
r, we find ‘

(2)

We note that if y is negative the aerodynamic velocity circulates in the
negative direction of rotation, which permits axis OY and axis OX to coincide
by a 90° rotation. We also note that if ¥ is positive the aerodynamic velocity
circulates in the positive direction of rotation. The result is that, if the
movement generated by the respective vortex is superimposed on a motion of
translation directed along OX, the transverse impulsion will combine with the
vortex along OY in the first case and will be in the inverse direction in the

~second case. Since OY has the same direction as Oy, this impulsion has the [;&
direction of motion of the rotor when ¥y is negative (operation as turbine)

and the contrary direction to that of the motion when vy is positive (operation
as compressor). ' .

17
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‘Figure 3

Calculation of Velocity at any Point of the Flow Resulting
from the Combination of the Various Vortical Potential
Functions and of Translation Parallel to OX '

Formula (1) above satisfactorily corresponds to this definition. To facil-

itate manipulation, it can be transformed using relation

n=wo
Hz (22— 3. etin) ,,, (22— n% 42 edi)
n=1 - :
Na= o 1 ;
‘ nz
= —emo ol . 2 o831 2. 3 . p31 s v §IN ——
I]i}” veetr-(v)tedla,, npie(r)Beella,,, e sin —— 1
n=

which becomes by logarithmic treatment

+n ' ’
lim Lz 4 EL(: i'n. e'“)isz+\ L(?—‘l n - el?) + lim 2L(z'+n'1" e""),
R ) e n-w (7
. 1 . .. %oz
:T:, L[:-T-t-':'eh-r'-e" ...]i-}-L(t-smm)
. -—-———(W,,,'z——d))+hm(,2 L(z’+n’-r’-e’“¢)>
"*°2n=ﬁ+1 , s

B

" and suggests the use, instead of the function 2, of the new potential function




®,;Wm'z—iY'L<i-sin£>. . (3)

. 2 T el
and consequently . :
.- - . .

. .. mz\2=w )
L(l-sm‘r.em)m(wmz—(bs);
o plx o x84 ofia 2., .2 p2ix o '
Jim LT ela e qdogdia 3.2, $+.—2,—"(w,,.~z—¢.)
n-+o T 'y ‘
» 2w . . nw .
=-i—.—(VV,,,'z—-(D)+hm ZL(Z’-*—H"C"“)
- L _ L . YR .

and finally

L s e‘ﬁ 0 1-2 . eﬂia . : . N’ . Ta . ezﬁl 2 (14 '}
L - % + i—°'-r(®~¢')
‘ . n .

. . N z .

- ;!T:o ,.%1 L<1 Tes e"“)'

However, the second member of the equation thus obtained is no other [15

than the expression of a series which converges like the series over

» nt 73 gbin.
the entire complex plane, provided N is sufficiently large. In addition, its-
sum is as much closer to the remainder of the series n—,—::—em terminated at the
hth tenﬂ, and consequently as much lower as N is greater.

It therefore seems that the functions & and Qs differ in practice only by
a .constant and that the derivative d @S can represent the desired field of

dz
aerodynamic velocities with a controllable approximation.

c. 'Explora,tion of the Field of Aerodynamic Velocities

We have do . B
Jey 14 l ’ Y T z
dz. =Wl——lvv";‘v‘vm-'-—z.r‘echtg,r.ela
and state | Ttz
Z= g
and consequently ' ‘
' edir 4 1
cqth= ez 1.

19



to explore the plane of flow by means of real variables, i.e.,

A = vectorial modulus (vector radius r = 3%1),
6 = azimuthal.argumént, ,
that_is C Aezeel®
: =0
and consequently '
Z =) ¢ el(0-a)
with ‘
iz = ¢2(|Acos(@—)+{nsin(0-za)|,
ho — e—-msm(o——a),
. gy =cos|2ncos (0 —a)f; by =sin}2xcos (0 —a)}, -
and then

ko (@ ib) + 1 2hoby + i (h2—1)
8L =l g — 1~ K—2hot, 1

and finally -

iy _ _i-y
2eqrela” 21+ (cosa + isina)

= Q—Y;(sin o - I cos &),

2 My by + i (Rt —1)

We— W, = W,,.—-zlz(sin a 4+ i°cosa)

where Wy and Wy designate, respectively, the components along X and Y of

the relative velocity W at the respective point

= .l (‘h:;- l)éosaz——2h0 b.‘,-sina"

Wx——-Wm—z_r h:_2h0a0+1 ’.

2 hybycosa + (ht—1)sina
R—Zha+1

y
W, = 5"

D. Airangément of Velocity Diagram

We here verify, a posteriori, that the conditions at the limits to the

infinite are sufficiently satisfied by the function 2.
1, At infinity upstream

Figure 4 resumes the passage to the limit given below

‘et a>0>aq

hi—2hgay+1 "

/16

(L)




N\ -
|
:

Figure 4 Figure 5

accordingly sin (6 - @) > O and hy = 0 when X = o,

W,»Wm—%cosa,

. w”‘—> -—- er.sin -
2., At infinity downstream

Figure 5 resumes the passage to the limit given below

—.(n—a) <0 <aq,

accordingly sin (6 - @) < 0 and hy = © when A — o,

We—>Wp + —2—1‘—: cos a,
Y .
W, — 5 Sin a.
These two results make it possible'to construct figure 6. When cir- {17
culation is negative, the arrangement of the velocity diagram corresponds to

the operation of a turbine and when the circulation is positive , the arrange-
ment of the velocity diagram corresponds to operation as a compressor.
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Figure 6

E. Calculation of the Circulation Determining Flow as a Function
of the Initial Elements of the Velocity Diagram

Figure T introduces the following geometric parameters not mentioned
earlier:

iy 1is the inclination of absolute velocity at the intake along the
turbine axis; . .
m is the inclination of the relative velocity Wy (theoretically at

infinity upstream) along the turbine axis;

Vl is intensity of the absolute velocity at the intake (theoretically
at infinity upstream); .

¥ is the deviation of the fluid due to the blading;

——
AW is the geometric difference between the relative velocities down-
. stream and upstream;

these make it possible to write the following relations

I—. . ___ sind;' . sin¢‘ .

,c=+ AW =W —w. S

S lmg+m_@ .MWWHWY (5)
Yl_\;o_j_l.‘=sin <m + g)= cos m, » (6)




so that

€0s i - sin ¢ . | (7

Y=—7"Vi'g (¢ —m) rcosm’

This expression of the circulation is valid both for the turbines [l@
(Y < 0) and for the compressors (y > 0) on the condition of counting alge-
braically in the system of xyu axes. It is obviously assumed, moreover, that
satisfies the inequalities

¢ ;»2:n,

(8)

y-m <0,

which limit the examination to resl cases of operation and to a rotation of the
machine in the direct trigonometric sense. :

2.3 DNumerical Calculation and Determination of the Limit
Conditions at Finite Distance

We have given a numerical example so as to illustrate the conclusions of
Section 2.2 and make it possible to apply them to the calculation of the aero-
dynamic forces in steady and transient regimes.

The elements of this numerical application are represented in figure 8;
ioe. b

; . Vvl =Wm '\/5‘; Wl = Wm;

=
I
cor d

m.

I
4+
=T ]

The pitch of the blading 7 is taken equal to unit length., It will easily
be seen that the value of g to be introduced in formula (4) is

2w

ac=—3—;

wr-R




by teking into account the relation

we deduct from the equations (L)

Y _
27~ Wm
S [ 2hyby\/3 4+ RE—1
W . 0 Yo 0
= W"'(‘*2(h:—2hoao+1)'

W" =Wm

2y b V/3 (ki — 1)
2(ht—2hyay+ 1)

A. Determination of Zero-Velocity Points

Their coordinates are solutions of the system of equations

By eliminating hg between equations (9) and (10), we obtain

( 2 —2hoay+1) + 2k by V/3 + B2 —1 =0;
| V3t —1)— 24,5, | =o.

By = 1

so that, from equation (10)

50 thaﬁ

- ao_‘bo\/g_

= e—2Min(0—a) >0,

K b, b
_ %==V%'F\/§"+1-

If we desire a, and bO in the form

sin A +\/sinsA+3=l/_3

@y =08 |22 cos (§ — )} = cos A; bo=éin32xcos(e+a)t% sin;x.‘

. T
'1 Sin =

3

21
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2mA—%hmA°“@+Q‘
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1

Function (A)

N

Figure 9

we find an équation in A whose roots are
A = 2k'l W (where k'l is whole, positive, negative or zero) (11)

A, =3% 4 2k'2 (where k'2 is whole, positive, negative or zero) (12)
2

These roots are shown in figure 9. From equation (11), we can deduce the
first series of values of ‘

. ’ » . . ) ‘ _k__—-—' *
‘-2§cos(0—a) =2k'yn, that is, _)‘=cos((;—¢)

h»]
\n



and

1
ho_ao—bo\/g

=1= e"h'lﬂ'tg(o—ﬁ). .

These are parasite solutions
O=a 4 k' n; A=+ k' m; r=4k,-x

contained in the initial formula (3) and corresponding to the indeterminate [20
velocity W immediately adjacent to the vortices symbolizing the blades of
the cascade.

It now appears that the calculated flow does not exactly represent reality
in the immediate vicinity of the profiles. We shall see farther below that
this has no importance in the calculation of the stresses and instead goes hand
in hand with the possible generalization of this calculation, independent of
the form of the profiles.

From equation (12) we can deduce a second series of values of A

. . ) ' 3 k'
2)‘cos(0-—a),=§§+2'k’,-n,.OI‘ cos(e—-a)=4—;-‘+_i!

with
1 1
hy=————— = —
ay— b, V3 \/3 ]
Loghy = —2asin (0 -— o) = -~;Log3.-
)‘=_ﬂiﬁ; e TL0g3:2 :
i 4 sin <0 ———3—) {1‘ = sin <6 -— —af)
2x\ Log3 1
tg(““?) Ry
To each whole, positive, negative or zero value of k'2 there corre- /2L

sponds a zero-velocity point located in the proximity of one of the vortices
symbolizing the blades of the cascade. The coordinates of the point
closest to the vortex located at the origin are obtained with k'2 = -1, that is
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( >_~I‘~°-g—3=—-03497,
™

*sin ( > = 0.3300;

0 = 120° — 190 16’ = 100° 44',

—DLogd
4-:0330

— 0.2649.

B. Evolution of Velocity in the Channels Along the Rotor Periphery

The formulas become simplified.as indicated below
0=o; sin@—a)=0; hy=1; 2hcos(®—a)=A=2Ar
50 that it is easy to prepare table 1, which gives the desired evolution.

C. Evolution of Velocity Parallel to the Turbine Axis
The points at which the velocities producing this evolution are calculated
are taken at the intersection of axis Ou and circles with the respective radii
r=0.2; r=04; r=06; r = 0.8.

The corresponding calculations are entered in tables 2 and 3.

D. Systematic Trace of the Flow Line Passing Through a Given Point

We assimilate the desired curve to a polygon. 3By multiplying the {Eh
sides of this polygoh, it is possible to reach any predetermined precision.

"Figure 9A furnishes the 1n61ca‘clon of the method. The angles Vp are those
formed by the vector radius of the point of order n(r , 6 ) with the tangent at

this point, and the angles B, are those formed by the vector radius of the
point of order n with the tangent at the point of order n - 1r, - 1, o, - 1),
so that we have the relations

R SERL ) S
sin (Bp—1) . sin (Va-1)' '
' d9n=6n—‘0n—h .

Bn—l = vn—) - d em
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TABLE 2. AXES INCLINED AT +.’3§ ON POSITIVE Ou AXIS (a = - laf)

r 02t 0,4-c 006-7 08
x;ir'l ........ e 02 0,4 n 0,6« 0,8 - n
% AU i 04 m 0,8 = 1,2 = 1,6 %
A =20 cosg-l—f—!— e 360, 720 1080 1440
Uy = COSA .vvven.. Cereneaeas 0,8090 0,3090 | —  0,3090 [— 0,8000
bo == sinA......... e v . 0,5878 0,0511 0,9511 0,5878
—2. x-sin<--,1;) 1,0885 2,177 3,265 4,354
e—2ABNO—) = By v s rrerrannnenn 2,969 8,817 26,182 77,804
P 3,4903 16,771 49,803 91,466
V3G —hm)...... Cereaeen ceeniaa] o —13,537 — 123,906 | —1185,60 |— 10 483,0
2bohy +V3 A —hY) . iveeainnn.. | —10,0467 | —116,135 | —1135,797 |— 10 391,534
2 Mg crerennnns Cerenaes 4,804 5448 | — 16,1804 |- 125,826
200 +1—20ah) vevvernrnaiiinn. 10,022 146,568 1405,3208 | 12 360,452
N RV £ U 6,0453 20,048 86,262 158,422
2(h 41 —2ahy) , _

420 b3 —(1—hD).ennn.. 23,8819 252,348 2 176,063 18 571,274
R — 230 — 24030 — 27030 — 290
TABLE 3. NEGATIVE Ou AXIS (9 -a= 12)

r 0,2 (1) 0,4 (1) 0,6 (7) 0,8 (7)
x=_;-' ..... e e eaeas 02w 04w 0,6 0,8 =
2h i, i 0,4 +'m 08w 1,2« 16°x
A 27\-cos;-1~i2 . Ceerens 0 0 0 0
G =COSA ......... R veiees ' 1 1 1 1
by = sinA ..., ittt eteretaneeren 0 .0 ) 0 - 0
—2X-sin§ ...... e eneaeaes —-1,25664° | — 2,51328 —3,76992 | — 5,02656
e=2ASIN®=3) = Ry ... iiiia... 0,2846 0,08100 0,02305 0,006565
2byhy viiiiiiaan.. Ceererrieriiees 0 0 : 0 o
V3 1—ay...... e iiainen 1,5918 1,7207 1,7311 1,732
2ahy oiiuia....,, T B 1 1.1 0,16200 0,04610 0,013130
2(ha+1—2ayh)eerrvnnniisnion. | - 1,0236 1,68913 1,90886 1,97383
2(hg +1—2aph) —(1 —hd)....... : 10,10460 0,69570 0,90039 0,97387
7 I B T X1 1. 2,473 1,904 1,778
L P DY X511 680 62030’ 60030’




TFigure QA

from which we derive the recurrence formula of the vector radii as a function
of the preselected arguments;

o sin (Vp—1)
Tn=Tn GV, — d Op)’

. From this it is easy to deduce table L4, in which d8 are 10° or 59, which

gives the elements of the desired trace. This table is referenced to the flow
line (c) separating the velocity field around the blade with affix Z, from the
velocity field around the blade with affix Z 5.

.

E. Determination of Limit Conditions at Finite Distance.
Trace of Blade Profile ¢

Since the distribution of vortices is given and the velocity field is
organized in accordance with a family of flow lines, the limit conditions at
finite distance can be satisfied in only one manner, i.e., by selecting, for
the extrados and intrados of the profile, two flow lines of the family inter- .
linked by a condition impressed on the volume of fluid in the channel consti-
tuted by two consecutive blades.

This statement in no way invalidates the general character of the Zgz
method proposed here for calculation of aerodynamic stresses. We shall see
in Chapter 3 that these stresses depend exclusively on the limit conditious at
infinity (this is the direct result of application of the Kutta and Joukowski
theorem). However, the calculation of aerodynamic moments, through applica-
tion of the second Blasius formula (ref. 3), depends on limit conditions at
finite distance. However, the investigation of the blade vibrations will be
limited to bending vibrations, which are highest in the case of relatively
short blades, and consequently does not involve the aerodynamic moments.

We should, moreover, add that the correct representation of an existing
profile can always be obtained with the aid of not only a single line of
vortices, which is too schematic, but by utilizing a rather complex group of
vortices and sources arranged along the arcs of identical curves and passing
through the points with affix Z, as in figure 2. At a sufficiently great

2N
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distance from one of these arcs, we necessarily find an aerodynamic configura-
tion close to that determined by the single line of vortices, because we are
finally rather well forced to satisfy the predetermined arrangement of the
velocity diagram. Simultaneously, the circulation of the velocity factor taken
along'a curve enclosing the respective src within 1t takes the same value since
the sum of the residue in the complex integration corresponding to the first
Blasius formula (ref. 3) is the same in both cases.

Specifically, the numerical application given in Section 2 tends to show
that for any velocity diagram we can define an ideal profile which constitutes
a generalization of all possible profiles of the blade cascades satisfying the
same limit conditions. Since we have established a correspondence between all
usable velocity diagrams and all type (1) vortical distributions, we can be cer-
tain that the results obtained by such distribution apply to all turbines.

The constitution of a profile on the basis of a family of .flow lines de-
fined by the potential function (3) is, however, itself affected by uncertainty
in regard to the leading and trailing edges of the profiles. The flow lines,

-
+‘~" \\ /
-~
Z; % ‘ S~ Lt

P e e e e = e e — —— o wm ]

\\
-

Figure 10
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in. conformity with the disposition of the velocity diagram, are practically
parallel as soon &s they deviate slightly from the vortical axis, and we know
only within the deviation between the one which serves as intrados and the one
which serves as extrados, the upstream point of impact and the downstream
profile tip. For the downstream tip, this theoretical imprecision agrees with
physical reality because the Kutta-Joukowski condition is never perfectly
satisfied and the direction of the velocity at a point of the extrados imme-
diately adjacent to the profile tip-always differs in practice by a few degrees
from the direction of the tangent to the extrados at this point. These points
must be taken at the origin of the wake from each vane of the blading, which
wake thickens out at the rate at which, with increase of the Reynolds number,
we come closer to the conditions under which turbulence imvades the channel
constituted by two consecutive vanes. While this transition takes place, the
point where aerodynamic velocity ceases to be parallel to the tangent to the
extrados rises on the extrados until it becomes stationary at the point where
the velocity of potential flow is maximum. It should be understood of course
that it will be necessary to take these phenomena into account, during [gé
investigation of damping, by means of hypotheses which should be made as
simple as possible.

 The numerical results in tables 1, 2, 3 and 4 have been plotted in figure
10, which represents the blades of a cascade obtained on the basis of numer-
ical data introduced at the beginning of Section 2. In general, we can always
select as intrados the flow line C, which is the flow boundary between two con-
secutive profiles as it was determined by table 4. The extrados can then be
deduced. from the datum of flow volume q passing through the channel constituted
by two consecutive vanes,

=
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CHAPTER 3. ANALYSIS OF STRESSES APPLIED TO EACH
BLADE OF THE RESPECTIVE ROTOR

3.1. Formulation of Aerodynamic Stresses Under Steady-state Regime

These stresses can be deduced from the initial datum of the velocity [gg
diagram through application of the Euler theorem. We shall see, however,
that analytical integration by the first Blasius formula suggests an extension
of the idea of aerodynamic-.circulation to calculation of the stresses in alter-
nate transient regimes.

A, Application of the Euler Theorem
The geometric mean W;'of the relative velocities at output and discharge
GE; and WE) is inclined by angle @ to the tangent to the rim at the respective

blade base. Aerodynamic stress F is broken into a stress normal to the rim F,

(thrust on shaft) and a tangential stress F_ (motive or resistant) as indicated
in figure 11. y

f; is obtained by writing the variation of quantity of the tangential

motion

Fy=—S-my Wy (Wa,— W) = — ¢ &AW, 13)

where s designates the section 7°! of a channel and S-mS'W'mu is the flow volume
q in this channel. -

F, is given by expansion or compression across the blades

- 1 S My o e e
U Fu=s-dp=5-g5 m (W= W) =257 (W; — W3) (Ws + W),

s

"Fu=S-m(Wa—Wi) W =S - m, (Wy, — Wi,) Wary + (Wa, — W) Worms -
*Fu =8 -m, (Wy,— W) Wn,,

0 &1

since qu is equal to Wl if .the fluid is incompressible.
u
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Figure 11

F
The quotient _% consequently is

Fy

F_ S me Wy =W Wn,  Wn,
CF, T Seme s (W — W) Wiy, W

which shows that the resultant of the F stresses is perpendicular to W_. {30
In addition, we have :

L]
o= | Wl et 2
Bl =1 Wanl s
[Fl =S my | Wl W] — Wyl

B. Application of the First Blasius Formula (ref. 3)

This formula is written

Conjugated (F) = {-ms -1

d O.\*
( oz )‘dz,;

where integration was made salong the blade profile and the blade, e.g., the one

located at the origin of the XOY axes, is considered a cylindrical element with
length 1. However '

Sblaiie

LSV
oN



Wm e Ttz ¥3 T2z
—_ 3. "% .,
T el'a tg T ela 4 . Tg . e“ﬂ COtg X e‘ﬂ’

(&

on the other hand, in the origin vicinity

T‘Z 1 1 nz
COtg =%z 3%- e‘« + c,
T e‘ﬁ
S . ) |
the corresponding residue of the term in = for S therefore is /31
dz :
LTI
7® s
that is
] R .t
[ (‘-i—(?"> Q= —2ig ¥m Yl
blade \ 42 ‘ oom
and then . '
Fe—im: 1 Wg: __,:i‘_'_"LE__'_YVm_’Y.

We again find that the resultant of the aerodynamlc stresses F is perpen-
dicular to Wm which is carrled by 0X. By projection on Qy we also have

m,'S'W,.,":q
and — o
Y=T'AW=T(W2V-W1’),

from formula (5). Finally the expression of the motive or resistant force is.
exactly that given by formula (13)

.

==t s my e Wi, - (Wh, — W), (134)

T

However, it may be objected that interpretation of the profile 1lift through
the theory of circulation of the velocity vector is valid only in the incompres-
sible field. The subsonic range is sufficiently important to remein within’
it by introducing, as a first approximation, the phenomens of compressibility

in the form of correcting factors in/ 1 - ME, where M designates the Mach num-
ber; then we have

T+ W; sin ¢ :
\/1 M3 COS (\}/—-m) (5A)
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Transposition of the expression for circulation from the field of incom-
pressible flow to the field of compressible flow is thus modeled on the
transposition proposed by Prandtl, Glauert and Ackeret for CZ. Accordingly,

conditions for strict application of formula (5A) are that the profiles must be
thin and their curvature and incidence slight.

To define the M number, we may call on the fact that linearization of the
fluid mechanics equations requires referencing ourselves to an overall flow
velocity and expressing this velocity at any point using perturbations con-
sidered infinitely small and where we neglect their square. It 1s consequently
convenient to select, for the M number, the ratio of the geometric mean veloc-
ity relative to the speed of sound a, at those points where this velocity Wy

is attained in the respective incompressible flow defined by relations

(hi— 1) cos a— 2 hy by sin & = 0‘,.
2ho bpcosa 4 (A2 — 1) sina = 0.

More prec1sely, if we develop the complex potential & of equatlon (1) /32
in the form

O =0n(my) + 10 @),

the general equation.to which the potential @ is subject in the xOy axes

is written, employing the notation customary for the laplac1an and by de51g-
nating the speed of sound by ag(x, y), as

1 \2 (‘b Ia(b b(b d) Z(D
Ad)“:_;z(sg\bq)n (b “)bby, nb n v n

J axﬂ_ YWY & +2°5 au brby

—

After linearization, this equation becomes

32 (Dn Wi, 32 Oy _ ’
SR e
. i s . . . XY
from which results the analogy with incompressible flow in coordinates | —j sle—=
v1— M

The Blas1us integration gives the stated result (refs. ll 24) and the value of
ap results from the datum of upstream temperature (we do know that the varia-

tion is in the order of 5° between the terminal point and the points where the

velocity reaches 100 m/sec). It should of course be understood that the
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specific mass of the equivalent incompressible fluid is that determined by the
conditions of temperature and pressure at the points defined by the above rela-
tions, where the temperature is taken as equal to the temperature of the up-
stream flow,

For the numerical application given in Section 3 of Chapter 2, the order of
magnitude of the respective perturbation is given by the ratio

- Wa, N
W——~m—Slntx 05

and therefore we cannot expect to derive the aerodynamic stresses from formula
(5A) with a precision greater than 25 percent, when the Mach number approaches
1. It is true that the curvature of the investigated profile is particularly
pronounced.

3.2 Significance of Formulas Obtained for Aerodynamic Stresses
Under Steady Regimes

Both formulas in qAW and Y (13) and (13A) stress the fact that the
T :
blades of the same rim may be charged unequally if the total volume across
the rotor is not uniformly distributed between the channels. However, the for-
mula in gAW states only the existence of a tangential variation of the quan-

tity of motion, whereas the formula in 2Y also specifies this variation of the
: T

quantity of motion or, in other words, this conversion of the fluid's usable
energy into mechanical energy (ref. 7) is linked to the nonuniformity of the

potential function describing the flow. (For this reason we prefer to {33
' 1
introduce compressibility by affecting it with the coefficient Nt rather

than to employ, as is customary, the arithmetic mean between the specific mass
upstream and downstream, which would have complicated the expression of the
aerodynamic stresses as a function of time.)

Of particular importance is the application to formula (13A) of the
Lagrange theorem according to which "if a fluid is set in motion, all its pos-
sible motion takes place with uniform potentials of velocity."

Since the cascade upstream flow may be considered as having uniform veloc-
ity we actually will not be able,assuming the fluid to be perfect, to pro—
duce at the level of the cascade, vortices perpendicular to the plane of
flow anymore than in the case of a plane wing whose behavior is not fundamen-
tally different from that of a cascade, and utilization of a nonuniform poten-
tial function of type (1) would merely serve to artificially create the
paradox of 4'Alembert-Cisotti (ref. 4). Some authors (ref. 20) consider that

39 :



if ‘the resultant of the aerodynamic stresses applied to a simply connected
body having three 'finite dimensions is zero for uniform upstream flow, in re-
turn, the paradox can no longer be sustained in the case of an indefinitely
elongated cylinder. Nevertheless, in this study we shall assume that a torus
of finite dimensions is not exempt from the paradox of d'Alembert-Cisotti
(which can be demonstrated) and (but without demonstration) that passage

to the limit of the torus to the cylinder does not introduce discontimuity in
the function

F,

5PSV3

Cp =

defined as the ratio of the projection on the axis of the torus of the aero-
dynamic resultant to the product, by the dynamic pressure in the uniform up-
stream flow, of the surface of the apparent contour of the object for an ob-
server at infinity in the selected direction (ref. 12).

We therefore consider that only viscous fluids are able to indefinitely
and stably support objects heavier than they, where the vortices necessary for
calculating stresses by the Prandtl method for plane wings (refs. 12, 26) and
by formula (13A) are produced permanently within the limit curve as outlined
in reference 47 for the Oseen equations. Each term in L(z - in 7 ela) of for-
mula (1) constitutes, under this concept, a type of mathematical integration
summing the nonuniform potentials of very small elementary intensity linked
to all the vortices existing in the boundary layer adhering to the profile.

The concepts of boundary layer, circulation and Reynolds number, where the lat-
ter allows us t0 simply introduce the fluid viscosity into the formulas, there-
fore play a fundamental role in all the following.

For profiles designed other than according to the considerations developed
in Section 3 of Chapter 2, it is possible to schematize the behavior of any

1

blading with greater exactitude by bresking down each term in n Tt e into ele-

ments localized on a curve arc passing through the affix point in 7 éla. The
result of the integration contained in the first Blasius formula is the [;&
same, but the pressure center is displaced and the aerodynamic moment, calcu-
lated with the second Blasius formula

. ) (D s
uK)o = — I”S.) l, real part 3 (fld ‘f) Z dz 2’

F4

=

depends on the breakdown mode adopted.

It should be understood, of course, that production of the vortices is a
component of the energy balance. In the viewpoint adopted, we regard the
expression of profile losses as a particular form given to that of the yield
from conversion of usable energy into mechanical energy absorbed or transmitted

4=
(@)



" by the machine shaft. Their amount may vary when part of the usable energy .
serves either to damp vibrations (positive damping) or to emphasize them (nega-
tive damping).

We can compare the proposed analysis to that by Prandtl (ref. 24) in his
theory for permanent motion of a fluid around a wing of limited span. Formula
(5A) retains only the influence of the linked vortices parallel to the span
which helped him to give the expression of the lift for infinite span perpen-
dicular to the general direction of flow. Neglecting the free vortices, 1t
does not consider the induced drag which appears with introduction of the
limited span concept, i.e., a reduction of local incidence equal to the quo-
tient of the perturbating velocity due to the free vortices by the overall veloc-
ity of the flow Wy,. Because the Prandtl induced polars are parabolas, sim-

plification consists in assimilating them to their tangent at the apex. We
thus specify the limits of application of the proposed hypothesis in order to
Justify development of a circular cascade along a plane and ultimately to
eliminate the possibility of torsional vibration.

.On the basis of the preceding remarks of a physical order, we have
attempted below to establish the necessary relations between investigation of
the blades under steady-state regime and under alternate transient regime.

3.3 Formulation of Aerodynamic Stresses Under Alternate
Transient Regime

A. Circulation Oscillations

If we assume that the flow volume q in a channel is strictly constant,
formula (13A) shows that the stress Fy may still vary as the circulation ¥y

which appears in the form of a function of angle V¥ in formula (5A)

t W1 sin \p
\/1 Mz " cos (4: —m)’

However, during alternating vibration precisely the angle | assumes an
increase d¥ as shown in figure 12. 'It is therefore possible to calculate by
the circulation oscillations as a function of time and to deduce from this [gg
the second number of the equation for vibrations.

Let (yb)M actually be the pseudo-amplitude of vibration at a given instant

counted in relation to the xyu axes linked to the rotor. A fluid particle
arriving at D which would have been at C after having followed the extrados in
continuous aerodynamic regime is in fact situated at J at the blading exit,
provided there has been no detachment at the profile tip. Utilizing the nota-
tions in figure 12, we can write
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and then GJ == —-dy,

d;‘p'_@__d!/-coip_; __dy-cos*h,
" DG e T e
cos 0;

where e designates the blading depth and 91 the profile chord inclination in

relation to the turbine axis, from which we deduce

T+ Wycosm dy « cos? 6,

. (14)

—tdy=— ._w )
v V1 — M2 cos? (¢ - m) €

+

In the absence of detachment, evaluation of dy results from figure 12 as

dy = p)w }sine (( 4+ {d) —sin o |
provided we now assume that elongation y is the product of the sinusoidal func-
tion of time whose frequency is not necessarily equal to the natural frequency

of the blades constituting the respective cascade, and of the pseudo-amplitude
(yp)M slowly varying in time.

A first consequence of this formulation is that damping may now be defined
as negative, positive or zero, depending on whether the pseudo-amplitude is a
function of time respectively decreasing, increasing or quasi-constant.

In addition, however, the result of such a formula is that, consider- {36
ing in practice the brief interval td in which the blading is traversed by
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the fluid compared to the oscillation period, the deviation of dy is almost in
square with the elongation y, hence its importance in regard to damping. This
passage interval tg -

e=wr~

may be defined as the quotient of the profile chord cy by the mean velocity

such as it appears in figures 2, 6 and 8 (neglecting the 050111at10n of tg
concomitant with that of y).

We subsequently introduce the idea of detachment at the profile tip W1th a

more complete expression of dy

(Yp)m — (;;‘O'L% L d,, (Re)

sin o ({ + Id)'—~ sin & { % (15)

The importance of this mathematical pattern in all that follows and, of
course, in the study conclusions themselves, necessitates explanation of its
constituting terms: dy is the elongation variation controlled by variation of
the aerodynamic stresses during evolution of the velocity diagram. This varia-
tion is reduced by the detachments at the profile tip in accordance with fig-
ures l2-1, 12-2, 12-3.

(1) 1In steady-state regimes, a fluid particle arriving at D and not

"adhering” to the profile DG would leave the blading at G'l, such that

GH GH  ca*|¢]
cosB; ~ cos 0,

-GG = =
sin 3 (61 + \P)

within the second order when the angle ¥ is itself an infinitesimal of the
first order (fig. 12-1).

(2) In steady-state regimes, a particle érr1v1ng at D actually becomes de-
tached (fig. 12-2) only at a slight distance ag from the profile tip DG and
leaves the blading at G's, such that

'GG’ cos0; - cos0;"

We can assume that GG'2 differs from GG'y only by a factor 4 (Re) charac-

terizing the importance of the phenomena linked to the fluid velocity and
V150051ty and to the blading geometry
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| GG’y = GGy * dp (Re)-
or also ‘
agep = ca* | §|* dp (Re), (151)

This last equation must be interpreted as follows:

(a) at constant flow velocity and, more generally, with constant Reynolds
number, any variation of ¥ is translated by a proportional variation of ey if

the distance of the detachment point from the profile tip has not varied;
(v) ep may be considerable at very slight incidence, provided the de- {38

tachment manifests itself in the immediate proximity of the profile tip, and
may be invariant when ¥ varies if the detachment point deviates from the
profile. However, at very slight incidence, the proportionality with ¥ will
probably be obscured by the occurrence of detachments independent of the
incidence whose origin must be sought in the geometry of the profile.

In a vibratory regime, the blade's oscillating motion has both the ten-
dency to reattach the flow lines detached in steady-state regimes and to aggra-
vate this detachment in such manner that the double amplitude of the fluid
oscillation is less than the double amplitude of blade oscillation (fig. 12-3).
This phenomenon can therefore be taken into account at least approximately,
and especially the local accelerations in the fluid at the points for which the
blade velocity is zero, assuming that there is complete cancellation of detach-
ment when elongation is equal to the pseudo-amplitude and directed opposite to
the fluid deviation. Since the fluid oscillation mid-point must necessarily
be the point G'p, identified under continuous flow (fig. 12-2), the pseudo-
amplitude of fluid elongation then appears equal to

ca*|$|

Yp)m— “cos 0y *dp (Re).

Conditions for applying formula (15) therefore are as follows:

a. Selection of Reynolds number Re

Re should characterize local equilibrium between the fluid's inertial
forces and the viscosity forces determining adhesion of the fluid to the profile

and characterize also the blading geometry.

We can use at least two very classical forms given to the Reynolds number:

(Re)

profile v ?




_ M Dy
channel v

‘

(Re)

)

in which v is the kinematic viscosity of the fluid and Dh is the hydraulic
diameter '

D = 4. line segment 417+ cos b

h ~ contact perimeter ~ 2(I+ vcos 0),’.

Moreover, there is a relation between the two

’ h — T L]
Re _ 200 Wm g g 91
channel v T - ’
. . . ~— 4 — 08,0,
. Cd Cd
that is

Rechannel = 2- Reprofile’ function (elongation, relative pitch, setting).

In both cases we use again the concept of circulation Z39
!
2 Reyrorile "V = 2ecqe Wt — Y

(cf. Section 3, Chapter 2), but the Reynolds number which is introducing the
hydraulic dismeter is the most significative and should be preferred over the
other because it allows taking into account the pitch effect.

b. Influence of span

Here again we neglect to differentiate the flow sections from the aero-
dynamic viewpoint and do not take into account the ends effects, except through
elongation and relative pitch. Formula (15) is therefore applied to the profile
median section and is subsequently compensated for by calculation to satisfy
the limiting conditions of the mechanical problem (cf. Section 1, Chapter 4).

c. Determination of the function dp(Re)

To determine this as defined above, we make wind-tunnel measurements
allowing us to determine, under nonvibratory operation, the deviation between
the value ¥ resulting from study of the theoretical velocity diagram and the
value of the angle formed by the real relative velocities of fluid intaske and
discharge from the blading. We can also localizé the detachment point on the
profile whose exampie is given in Chapter 6.

L6




Finally, the circulation oscillations can be expressed as follows

| d -'
=yo+dy=yo+aTYPd¢=Yo+YxSIH(wl+l)

with '
. : v+ W, cosm ,cos? 0, cald],
Y1°sin (0 ¢ + j) =\/1T1\F cos? (§ — m) e (yP)"_E(TS—GI dp (Re) { G
and E .
C,.=sinwl,pcoswt—2sin”92—t‘-i-sindt, ‘
or : o S

Y1 * sin (e + ) =Y,)sinml-co'sj+coswt°-sini}, ,

tgj = —cotg m—i—t‘i,
. a -
P=—g+ (154)
_ *2-7:Wycosm__ costl, . wold cald]
Yl__. VI—Mi.e cC0S8'()—m) M2 (y")"_cose, dp (Re) {. | (15B)

The formulas thus obtained will be discussed during investigation of ac-
tual damping in Chapter 5. However, it is interesting to note even now that it
will be convenient, as we continue calculation, to break down (y). sin (wt + j)

into o 1 - /ho
T W,-cosm . cos? 0, 1 dyp . 0l |
( T it e oo ) 00 la g 2oine % |

( T Wicosm _ cos’d,  cajyl-dp(Re) , . wtd (

osm . dp (Re) wld L\ -
V1—Mi.e €08 (y—m) cos 0, Sy~ cs e l+2>

neglecting the assumed slow variation of (yp)M, i.e., supposing that the deriv-

. d . .
ative —. is ve slight.
= (yp)M ry slig

» d. Local volumg oscillations

For volume oscillations in the channel constituted by two consecutive
vanes, formula (13A) furnishes an additional stress

Y
dF‘, E= el ; . dqy
where

dg=d(my+S - Wp,) = ms'.wm“.l.(li’l.':i-‘_lfj_*_f!’iliﬂl_’),
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and, for each blade, yp designates the distance from the wmidpoint to a radial
axis Oxﬁ passing through the blade base,

The consequences of this local volume oscillation can be investigated by -
an equivalent formula in ms(Wmu(yp - yp_l))if we adopt for y, the form

cot __g__(g,l—_l;_).j ;

Ny

Yp = Yo * sin

y -
Actually, the difference between Jptl 7 Yp-1 4pg Yp - Yp.1 18 expressed by
2

MZN_P,,s_*_sin;m,__z_(E_g‘_z)_l's
0 0 . ‘ O
2 — SN

! , o= (sin

and it is sufficient that NO is greater than 7 so that this term will be

sin
2(p-——1)1r%
(dl.—“——“‘_'No

R

negligible within 10 percent. We therefore take

X an"‘—'—';Yo‘f‘Yxsin‘””'ma'l'WMu'y“&_:Tge:‘l:Fu'y’:}_ij'_ (16)

Chapter L discusses specifically the details for applying formula (16)./41
The conditions under which the subject of influence of the free vortices has
been neglected throughout this section should again be specified from different
viewpoints: ! .

-- First, in regard to the absence of detachment, Circulation variation
in a nondetached regime generates damping and is inevitably expressed by emis-
sion, strictly at the profile tip, of free vortices parallel to the span.

These vortices, if they were generated in a nonviscous fluid by some process,
would modify the 1lift, which is calculated on the basis of the linked vortices,
and also the aerodynamic moment. In viscous fluid, these vortices have little
influence, because the rotational energy they contain is rapidly dissipated
into heat, specifically in the case of bending vibrations, for which the

‘damping effect resulting from relation (14) is due to a variation of V¥ (or in-

cidence, see Chapter 6, figs. 16 and 17). However, for torsional vibrations,
the incidence variations may have no influence on the aerodynamic moment if the
mechanical axis of torsion runs sufficiently close to the center. We must then
introduce the "installation function" for 1ift calculated by Wagner (ref. 23),
since the orders of magnitude are sufficiently low to be compared with those of
internal damping of the blade material.
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-~ Second, in regard to detachment. We specify further (Chapter 5) how
on the extrados the rise of the origin of the free vortices, which introduces
fluctuations into the geometry of the velocity diagram, causes cancellation
of the damping originating these vortices in the absence of detachment. On
- the experimental plane, the distinction between alternate vortices resulting
from circulation oscillation and vortices released in a detached regime is
perfectly clear, since the detachment can be observed in the absence of vibra-
tions (e.g., aircraft stalling)..

In the final analysis we thus find that it is entrance of vortices pre-
existing under a detached regime into an oscillating regime which provokes the
instability, whether this concerns an isolated profile or a cascade (except for
some differences discussed at the end of Chapter 4). It is probable that no
fatigue rupture has ever been observed on isolated profiles vibrating under
flexure. However, the existence of instability through detachment is evident
at least in the relaxation oscillations of a flag because the wing loads of
isolated profiles are too slight to present any danger of fatigue. Certain
precise facts determined in regard to cascade profiles operating at high tem-

‘peratures (first stage of steam turbines) (ref. 13) confirm this viewpoint.

Finally we should add that the preceding reasoning was developed by taking
the resultant of the aerodynamic stresses, implicitly assumed as uniformly
distributed, in the center of the blade axis. To conserve the general charac-
ter of the exposé, we shall- consider in the following, whenever necessary, that

Y) 1
axis with length dl in the center of this element

1 .
the aerodynamlc stress (F + dF LA applied to an element of the blade

3.4 Elastic, Inertial and Centrifugal Stresses

We do not investigate the case of blades joined at the top because one 1&2
of the study's objectives is precisely to provide a better knowledge of the
vibratory phenomena so as to avoid recourse to devices which inhibit these
phenomena and reduce yield.

The blade is considered as a relatively short, flexible knife blade with
torsional deformations consequently negligible in comparison to bending deforma-
.tions. This blade is implanted at the origin of the xyu axes along Ox, and its
mass P 1s assumed to be concentrated in as many points, equidistant from the
blade axis and taken as an odd number, as is necessary to attain the desired-
precision in evaluating the mechanical stresses (ref. 23).

Figure 13 represents the breakdown into three punctiform masses. By fol-
lowing this simple example and temporarily disregarding the centrifugal forces,
we shall show how a complete calculation should be carried out if we desire
anything other than an analytical explanation of the phenomena of vibratory
damping in the turbine blading. The figure shows that the elastic line is
broken into four sections in accordance with the four differential equations
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EI y”, = ‘"—3

Fy
dee +"3>

(17)

(For convenience in calculation, this section assumes that Fy is indepen-

dent of time. In the contrary

elastic deformation of a blade is made in the same wmanner.

case, the pendular’ equations (19) are replaced
by equations that all have the same second member Fy/3. Investigation of the

In addition, the

aerodynamic damping forces are small in relation to the other stresses applied

to the elastic line, so that the results obtained in this section and per--
taining to natural frequencies and maximal values of the elastic stresses

are independent of the results obtained for vibratory damping in Chapter 5.),
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For equation (17)h we desire a solution of the form /43

1 and we have Vo=@ h{)=0, i.e., f.=0

fo@) =fo x4+ fo

wherevfo designates the initial amplitude of point Y3 in figure 13; f'o, which

defines the blade inclination on 0x, results from fO and will be furnished as

the result of calculation; h(t) is a sinusoidal function at its maximum at the
instant zero and consequently must be taken equal *to 1 at that instant, but
this maximum may vary between values greater or less than 1 during vibration
-if damping occurs, depending on whether this damping is negative or positive.

We also desire for equation (l"()3 a solution of the form
Yys = [ (@) h ()

and we have / ' . : N
| | v=h(%) 10,
5

Vi=['h®, i.e., {

and further
Bl h @ ={—5 4 (%) w0 02| (% —=)

The separation of the variables assumed at the beginning consequently Zhh
presupposes : :

| _34_/3(5_6_1)7111 () +P—:_;E=.K3h(()',_l‘

which, within the constant term, leads to the pendular equation

P . K,
_ 3"\}! + -

Is (éﬁ‘lj

Subsequently, we deduce the third section equation from

h=0. (19a)

51



Bl o @ = Ko (5 —2)

where the integration limit conditions are

%ﬂ;’ <561> /'a( ) = {'e

dy, <_5,.l> - 51
t\6 /) 6
or o
Us (5‘6“1) = !{4 <§6_l) : /s (53’1> = %!/'o—/o'

3 : 51
EI- ["%. = K,(—G-I—x)+ K,ﬂ(g‘—-x),

with the new limit conditions of the integration

BE-20) (nC)-nC)
b)) | GG
For equation (17)l we finally have

P, K |
3 h '+/;<é> ‘h ’ 0 (19¢)

with the limit conditions at the recess supporting the blade base

’

VB0 =0 o 3 1@ =0,
no=o L HhO=%
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The three constants K3, KE’ Kl which appear in the pendular equation {h5

are linked by the relations expressing the uniquehess of the three forms ob-
tained and make it possible to assign it a unique number, or (19),

K, K K,

ORI

The denominators may be expressed as a function of the magnitudes fd and
fb introduced for the first section. -To obtain these expressions, it is suf-
ficient to integrate:

(a) in the case of f"3ﬁ

X'
K, /51 2
EI /8=_"'2‘3'('6“-‘17) +EI /'o)
hence ’
, K, /501 \¢
I’—/"‘_‘_ET.(-G«_ )
and

(b) in the case of f"

, K, /3l \2 T N
EI'/:=—-7"<‘6——x) ——§9-<%-lex> + Cte

where the constant. is determined by the following condition stated above

M) 1),

taking into account the relation obtained previously

. /31 . K, /51 3Iyv
EL /() = Bl fo— 2 (3 =),

hence

f_p Ko /8l N K, (51 \&'
Iv=lo—gE] (6= =z G =)



and then

31 51\
=/'°x+f°+61221 (“‘ )+6EI<6 “>+C“"

or, taking into account the equation

“(5’{%'

.A=n¢+n+6L&y—mf+W§(%—wf;

e et P

(c) in the case of f".

,  and by analogy with the results obtained - AL

Xl

l : K, (31 )z K, (;3_1 )a
fi=Fo— 2hl (é—x) —3EI (‘6_’” 2EI'\6 %

E
K, /I s K, /31 K J
/l=’°”+/°+6€1 <o )*61&2’ ) THE ("“x>

and finally we must solve an equation in r,

"'—51Ka - 31 & 21 ./1 Kz‘zs R 74T
/'o+/o /'0-'_6‘+/0+6E1< ) 6 +f°+6EI(6) +6_.Ea_1(75_)

equation which is furnished by the condition

Y, 0 =4O =0,
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or

o () 2 (30 (3 o

ot

Thé value of f'o results from calculation of r, on the. basis of the rela-

tion furnished by the condition

Bioy=r,@=o,

or , .
Fo— - () — 2 () - 5 (31
¢ 2EI 6 2EI \6 ' 2E1 \6/ —

1 Kp» Ks.

More generally, a breakdown into (2n' + 1) punctiform masses furnishes
a sequence of (2n' + 1) values of K, and, consequently 2n' relations. The con-

from this we then will deduce the values of K

.dition

y,(0) =0

furnishes the:(En' + 1)th, which is solved by an equation of degree (2n' + 1)
in rg with the value of f'o deduced from

y'l(O) = 0.

Among the roots of the equation in r,, at lea§t one of which is real, {h?

we select the one which corresponds to the lowest frequency value to obtain the
fundamental, and the successive partials are obtained with a precision in-
creasing with nt'.

We finally obtain a unique pendular equation whose structure makes it pos-
sible to investigate the vibratory blading damping with a controllable preci-
sion in calculating elastic stresses; subsequently we will investigate damping,
using a very rough approximation of the elastic stresses {n' = 0).

This result shows that it is possible to consider with equal accuracy the
centrifugal stresses in accordance with the breakdown given in figure ‘14. Each

elementary mass.EE_g___ undergoes an acceleration in the direction of increasing
Y+ 1
X's and equal to
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The ratio of the two terms thus demonstrated is

@2c¢=—1)1 !

fe __@2d=—D1
F.T2R-@n ¥ 1) 2R

since q' is the order numbér for the respective mass according to the breakdown
adopted, and 2n' + 1 is the total number of the corresponding masses. Having
t0 consider only the relatively short blades (20 cm) set into rotors whose
radii easily reach 30 cm, we can neglect the term in 2g—1wrl

Y ’ & 22n"+1)

In these expressions, w designates the frequency of machine rotation N, »
or

W, = 2n Nm.
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CHAPTER 4. FUNDAMENTAL EQUATION OF VIBRATORY MOTION

4.1 Statement of the Fundamental Equation

In conformesnce with the diagram of forces in figure 1lb corresponding /48
to the case referred to in the preceding chapter, for which n' = O, we can
write (p designating the order number of the respective blade)

d’-’" .3 (1+ Yp-l)_-qudgﬂsg‘_x)_‘p'wz'R(Yp“‘..'lp) \(20).

with

. ~—

Yo =1 @) hy () Y,,—/()h,,(t) and 0<T<h or <zl

However, this approximation is incorrect for the component of Fy that is
a function of time. From formula (15), the increase of circulation dy given
in equation (14) is also a function of x through Yp and the complete statement

of equation (20) should include a term in

S:/(x) } hp () — hp (L + ta) | (X — 1) dX,

which precludes solution with the aid of separate variables. In practice, we
will not construct a function Yp of space and time in successive stages,

assuming that the separation of variables presupposes, as indicated in para-
graph 3-b of Chapter 3, an experimental adjustment of the damping coefficient.
It should be remembered that, during vibration, the exchange of mechanical
energy is made between points on the elastic line and that the measurements of
the damping coefficient depend strictly on the point of the elastic line
selected to carry them out.

In the simplified equation thus obtained, the complement of unity of Fy’
({E_:;EE:}), results from formula (16), with the order of the blades being
T

counted following y. Thus, the balance of the quantities of motion lost in
discharge from the rotor, specifically in the case of a circular cascade, will
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be correct in absolute and in algebraic values. (For example, if v < O, [h9
then dFy.is a positive increase of the force applied to the blade of order p,

provided the difference Yp

Flnally, to solve équation (20) we utilize relation (19) resulting from
the normalization of the (2n' + 1) equations (19a), (19v), (19c) in the form

—.Yp 1 is positive.)

F"(l Yp— YP‘!)__pddlYa = Kf P ol Rhp() (194)

with
lth Fll I‘Uo + r ”I (I)

and equation (20) becomes

F ff R/'(x)~/(x)—-—/() K/ (3~ =) )

This equation is linear and of the second order; hence its general solution

/kx)=/(é)—Kf<é—’x>-{;AochUx-J;—B;,AshU,", i+ 0<z<

NlN

t/'(x)=['<—é>’, if '.%sxsl,

omr . ' )
= . . s /
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The determination of A, and B_ results from the limit conditions:

0 0
(1) %‘(0);6,1 Cor
| _A /'O =K/ + B, _'o=‘—%’,
(2 ¥@®=0, or

/(0)=/<> Kﬂ+A =0, Ao-_—_%/-l-__/(é);
(3) v@=i(}) tor z=L or

Aoch< >+B h(gl> 0,

(i) s Y-

from which

Y

1——2

Ul

B~

Equation (19A) in hp is therefore written as

R L.

Fy

or

which is the fundamental equatlon desired if we disregard the damplng

of metallic friction.
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4.2 Natural Freguency of an Isolated Blade

From equation (19B) it is possible to reproduce the natural frequency of
the isolated blade within a fluid at rest, i.e., the one measured in practice
on the machine rotor at rest; to achieve this, the term representing the cen-

trifugal forces in wi R and the terms representing the aerodynamic forces in

| Fy must be made to tend toward zero.

" Let us state o /51

and let us consider the limited development

Up+ 504204

thUU°.—_- Uy =1—<-21-i—-3li>U,',+....
o "
m(+m+”+ )
This development allows us to write
L _thU, Ui P-o}R B 1
from which ' 24 EI
i 2-Kk3- 0): .-R = ’Pla‘
end equation (19B) becomes
. 24EI,
Bt o

from)whlch we deduce the natural frequency (as a very rough approximation
here

This is the fundamental equation. The partial equations are obtained with
a more complex formulation as indicated in Chapter 3 and, with them, a value of
Np as much more accurate as they are numerous.
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4,3 Approximate Linearity of the Fundamental Equation

The linear character of the fundamental equation results from the divi-
sion in two parts of vy given in regard to equation (15B), which wakes it pos-
sible to write

P;u = Fy, + Fy, (0,

o

and consequently, in equation (19B)

lh”,,(l) +2 k2wl Reh (z)-JF"'h,, (1)—1-5’1%-(’—)-'1:,,(})
—_ lFIh lFU: (1) l Fllv l Flll (t) |
= ~t N2 P b O—2—p b (D)
Peily) ey T

From formula (15B), Yl is an infinitesimal of the first order and, con-

sequently, the term in Fy (t) in the first member is negligible in relation to
1

y

negligible in relation to the term in F_ h (t). In addition we shall /52
Yo p-1

see in detail in Chapter 5 how decomposition of the product sin (cot + j)
. Y1

' the term in F... Similarly, the term in Fy (+) hp 1(1:) in the second member is
1 -

Iy, (O h_(t)
included in '”(lj'introduces into the first member a term in P _ " and a term
\2 ' : dt :

in hp(t). It will suffice here to stress that, by stating Fy explicitly as a

function of y,, we give equation (19B) the form

-

| ” ;o ﬁVV'  sing { |
ah"p + I +§ \/1 1, cos(q;—m) rghp
Wy sng I
- Vi—Mp cos (y —m) 7
gW, - 1 [l dp(Re) - wlg.’ ta\’
T (1) 6w 2 (e 4)
. * 2

qW, sin
Vi, wsG—mE 2 1o 0
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or

; ' . : ; o,
_ah,,+ b p + (¢ + T hp=d + Ie-h,,..x+/sm<ml+]——NRo—T-r>, (190)

by taking into account the relation (15A) and by introducing a phase-shift
function of order p defined in the following section, which is zero for the
blade of the order Ny. We thus have '

my Wi+ *  sin ¢ cosm
Ic='—' ——— ‘ ’
“V1—M2-P cos (¢ — m)

P_%'WTP.LW§%W%MﬁMW¢P%GM,“mﬁQ
—Vl M2 P e COS’(\I}—ITI) AR 2"2
- /(i)-cose1

We can already note that the coefficients a and ¢ of equation (19C) are
written, in the absence of aerodynamic stresses, as

=
.

a=1 c=2k 0! R;

[a

It is also important to note that equation (19C) contains only a term of
self-excitation due to the wake of the profiles, and does not take into
account any other excitation forces. These forces result most often from
breskdown of the flux of a development in a Fourier series (ref. 25) in rela-
tion to the multiples of the excitation frequency, and the presence of these
forces may be expressed by frequency and amplitude modulation of the vibratory
phenomena due to self-excitation when the orders of magnitude are comparable.

Finally, we should further stress that the frequency w appearing in the
second member, i.e., the vibratory frequency of the respective blade, is a
priori different from the natural blade frequency Wy which can be observed by

revolving the rotor in vacuum taking into account the centrifugal forces.

L,4 Investigation of the System of Equations (19) Representing
the Vibrations of All the Blades in the Cascade

Equation (19C) is included in a system which consists of as many equa- Z53
tions as the cascade has blades
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. - - ) . . 2
ahg.ybyl+.@-+lgh,=¢i+-uhm-FIMn<wl-kl——§£>; 19.1 |

: ' g _
ah’s + b’y + (c + 1) by = d + I hy + fsin <0) t47 -—-Nz:), 19.2
‘ . , 2p=w '
ah%.ybﬁp4.@-+lghp==d+-Lhmﬂ-k/mn<ml-+1——7q:>; 19.p (19)
e e et , /
QR+ Ry, + (¢ + 1) by = d + e, 19.Ng-y
+ / sin (w L+ _?“‘[%0531_7});
ah"s, + bl'w, 4 (¢ + 1e) b, = d + Lo b, 19.N,

+ fsin (,,, {+] _%JEZJ_TS)

In the case of a circular cascade, the phase shift 2% between the vibra-
. 0 '
_ tions of two consecutive blades, which is assumed in the formulation of such
system, is the consequence of a simplifying hypothesis according to which the
cascade and the flow passing through it are perfectly symmetrical in a sym-
metry in.%ﬁ. The phase shift of one blade in relation to itself is equal to
0

2% and, if we admit that the phase shift at the p-th blade in relation to the
(p - 1)th blade is equal to the phase shift of the (p + 1)th blade in rela-
tion to the p-th blade, it is clear that the phase shift then must be equal to

- 25 . . .
—. In practice, we occasionally observe phase shift values between consecu-

5
0 2n
tive blades equal to __O _, which leads to the assumption that phase shift of
N
one blade in relation to itself is 2ny 7, where M is a whole number.

In the case of a rectilinear cascade of the type investigated in Chapter
2, we can identically conclude this by assuming that the first and the last
blade were placed at a distance from the wind tunnel walls equal to the cascade
pitech. ‘

A. General Solution of the Equation for Vibration Without
the Second Member

Solution by successive substitution leads to a linear differential equa-
tion with constant coefficients on the order of Ny in hNO, whose second member

is a periodic function of wt. The corresponding characteristic equation is
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art 4 br 4 ¢ + I )™ — 2% = 0, - (21)

. Bach hp function constituting the desired solution is therefore ob- /5%

tained from a single equation with the characteristic values

ar® + br 4+ ¢ =0, (22)

Thus, all the preceding applies to each blade of the same cascade, and speci-
fically the calculation of the damping coefficient, in the form

e b

Vare

B. BSpecial Solution of System (19) when the Equations are
Written with their Second Member

Within a certain approximation which will be as much better as the number
Ny of. the blades of the cascade is greater, system (19) permits the following

special solution

hp=hasino t—22E) 1 4 gy
o -
_f.cosj : ,
hm_c—am" - 23.2 , ( 3)
, b :
igl=c—-—a(,.)" 23.3

We thus have

' 2(p—1 d
h,,_1=h¢,.sin(mt-——(LI\I—o—~)—’-‘>+E.

4 2pn=n
Ky :-h,,-w-cos(wl—— N, >,

hp = —hp * w? sin<m1—2£n>,»
0

and consequently, by substitution in equation (19C)

n



o e —awsin(al =21 T) 4 b b o - cos (01 —22T) 4 4 18

0 0 4

Ld, .- p —
=d 4L +I,-hm°sin<ml——g—(9—N “")——Iehm'si“(‘“—?’g_n)

c 0 []

\ 2p=n ; 2pn\ . .
+f_-sm(m.l-— 1@0 >cos,+/-cos<mt—— Igo )sm];._

In thisAlast equation, the introduction of relation (23.2) yields

e o )sin ( 205 (o1 '_3@——_0_5) |

0 N,
==)/Sini——b°h«,'w{cos(ml——_—2~£—§>,.
- [] .
or also, considering relation (23.3)
. s/ 2 —'1 ™
2Ty havsin oo (o1 - 2270EY g,
| P sin N, cos (ol D) N, 0,
This last identity is ascertained within the second order, since I, is {55

an infinitesimal of the first order, as is the deviation angle V¥, when NO

is sufficiently large so that % itself is an infinitesimal of the first order
N .
, 0
(sin . = 0.26 for Ny = 12).
N
0
c. Compiete Solution of the Fundamental Equation

From the foregoing, solution is obtained by superimposing the special
solution (23) on the general solution of equation

ah" + bh' + ch = 0,
which results in the study of damping and of stability which are the subject of
Chapter 5., '
This method of solution obviously supposes that the initial conditions at
the time of release of the cascade blades are particular. In the wore general
case, the characteristic equation must be treated as an equation with multiple

roots. Also, 2NO solutions for the equation without second member can each be

found separately by constituting exponential products using polynomials. The



particular case under consideration is the one in which the constant factors
affecting these products are zero. ‘

We are satisfied with this particular case because the instabilities which.

would not come under any predetermined initial conditions system would have no
physical significance and would not exist in practice.
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CHAPTER 5

INVESTIGATION OF DAMPING

The preceding chapters make it poss:.ble to limit the 1nvest1gat10n to {56
that of the typical equation .

ah" + bk’ + ch = [ sin (0  + )
dh

The coefficient b of P is the sum of two elements b, and b
J

1

o The more
important, b;, results from formulas (15) and (15B)

We return to equation (19B)

s (2 K

R T

] =0 homs
/5 '
and the definition of Fy given in Chapter L4
Fy = _ﬂ_;ﬁ_fl;Y_ *sin (o { + j). .

We thus have

—¢q W, cosm_ cos“() dyp - €

g Vioe coRG—m o el —2 sin? =5 -

Fll = Fllo +

+q *Wyrcosm  coshy e ¢ dp(Re)

Vi M R

o lq

2 sin—— ¢ cos
_ cos 0, T

o)(l +i_ﬁ>

and without damping we would have in these expressions
. I N |
yp=l<—2->hp=/<§>-smml, g=mg ~+1*W, cosm,
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or since hp is a function slowly variable in time,

IF, IR,
A l
) ()
m,-l’-V\’foz.co‘sz()l cos?m/ 1 ( ___2 —-lii-h>
_P\/{:ﬁ; e cos’(q;-——m)( "sinold =g P

4

ms B Wt t 009220 cos? m cq|y| - dp(Re) .25 n——ld cosm(l +(§>
P\/l ___Mg e cos? (¢ —m) cos 0,

from which we deduce

b . "W 7, cos?0,-cosPm 1 . (
p\/l___Mg e cos? (v——m) (')Mn(x) &
2 2 2
=2k R "W (:0920l cos®m Zsin’g-);lf!,
P\/l—-W‘ e cos b —m) 2
my -1+ W 1 cost0, - cos*m cq*| |- dy(Re) sm&@.mw'(l 4 @)
sin —5= * cos 5 )

/sin(c.)l'+'l')_'_\/1 M "e” cost (y - m) /(l> cos 0
B ' 2 ‘ '

The second element, b2, vrepresenting the material's internal damping, /57

can be conveniently expressed by the logarithmic decrement of vibrations ob-
served in still air with the rotor stopped

_‘%. P
-%~Vh c.
To sum up, the investigation must proceed from equation
“ah” 4+ b 4 ch = [sin(@{+]) (19D)

with the following coefficients

68




\/ Wit cos?0, - cos?m 1

P\/l T € st (G—m) oo el
e .. M B WS Lcos“ﬂ cos?m 0l
C=2)3 @} : P\/l--Mz e cost (§ —m) 2 sin? -5 "\ (24)
wld ‘
]__—+ 2 ~y '
f = 13- Wi 7 _cos?h, - cos? m JCa|y].dp(Re) 2sin9-£i
270 ; .
Vi s el
5.1 Vibratory Frequency is Equal to Natural Frequency
From formulas (23.3) and (15A) we have
c—aw’:bm‘cotgi=——bwtg%@,‘.
or, by deriving a, b and c from relations (24)
. _m,-'l’-W}.E'cos’Ol-cos’m . .0l
ol P/I—tp ¢ cost(§—m 2sintg—lat
' . old
MM le my '+ Wi v cos’f,:costm
Tt T Ty T ¢ e ) el
2 .
or
‘0! 2 2 o la~0
W, ~—— O =‘—'(.v) 2;&'0)0 d‘f’ y

since the true frequency w is in principle only sllghtly hlgher than the {58
natural frequency. :

The natural frequency Wy is by definition

- \/Zkzm,ﬂ
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5.2 With No Self-Exciting Force Due to Detachment at the Profile Tip,
the Fluid Damps the Blading Vibrations

The second of relations (24) allows us to define the damping coefficien®
in the form -

A = ‘b _ 7tb lcb
m _\/a ‘e Tare e’

A ol ‘T W’ cos*m cos’O 3 '
m = G —5'sinowlq

p\/ 1 — M "cos? (§ — m) e o

with definition of the time of passage t

g glven for formulas (15)

4= W, = Wy cos0,

and with no account of an experimental proportional adjustment.
Figure 7 furnishes the géometric elements for calculation of Wm as a func-

tion of Wy, m and ¥ through application of the bisector theorem

L O2WE = W’ + W cosf((); m 5 we TZW;—%;(;’Tm_) ,
W, = W1 V/cos? W — m) + cost m — 0,5 sin? ¢
\/ 2 cos (¢ — m) .
from which
Py {vde 89 V2 cos(q;——m)

~ W, cos 91\/c053 (¢ —m) + cos* m ——0 o sin? ¢
and formula (25)
An—dy = "1+ Wi cosim:cos?0;, mx
P\/I—Ma 008’(4'-"1) eat

 sin ) 9 V2 cos (§ — m)

W, cos0, V/cos? (¢ — m) — cos® m — 0.5 sin? ¢

The formula shows that, without any self-exciting forces, the fluid it- /59

self damps the vibrations of the blading approximately proportionally to the
incident veloc1ty
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5.3 A Self-Exciting Force Can Lead to Negative Values of
the Damping Coefficient :

To construct the genei'al solution for equation (190), it is necessary, as -
shown in Chapter 4, to solve the equation.with no second member

qh'-}-é“l' a*ch'4+ch=0

which furnishes R
m

4h =e~7"‘w(T cos 0); { 4- T, sin
1 1 2 @10

with ‘ ' ‘

- Al
W = Wy 1—-1—;‘ "

and this general solution appears in the form

—Am ) , (26)

o
h=¢e 2™ "(T,cos 0,1+ Tysinw, ) + hosinw{,

where T, and T, are determined by the initial conditions

2 1

h=1 for t=0, or Tl=l and %:O for t = 0.

However

3—Tl'mlsin.¢olt+T,m‘°coswll(

A —Am '
gt e WYY T, coswt 4 Ty sin o, 1| + he* @+ cos o,

from which

A .
T’ml""ﬁ'onr‘*‘ hw.(;,):o‘
or
_An ay W
Tl Q—ﬂ: ;;""‘ :o;l-
We simplify by taking /
Wy # @y # .

71




We then find : {60

Am

h=e¢ 2 )coswl 4 (2—'7';-—];;’:) sin 0)12 + he * SiN @ 1, (27)

or, multiplying the two members of the equation by f(%)

—Am A >A o . .
y=1ype ﬂﬂmlzcosml-}-(l;’: ':}o> smmli-{-y,,,smwl. '(28)

It is then convenient to express the ratio Y. in the form of the product
o)
of a sine by an aperiodic time function representing evolution of the pseudo-
amplitude ¥y, and consequently defining the corresponding damping

Am

) et (Am Yo\ |, Ve LLIY
‘yo—;e in (2—1; y0>+J smwl+e‘2ﬂ scos !

or
LA
———— (29)
: —grat(Am Yo\ Yo — et '
\/36'2" (27‘—.1/0) y°§+'e " . .
o o { 4 arctg !
= sin An Yo\ | Yo — 20t s
_ﬂ_..__._>+‘——e 2n S
2n Yo bo )
which gives
_i‘_"‘_m( Am Yoo Yoo {2 —Am ot
\/5 (=t il e (30)

Conseguently, a condition necessary for negative damping to succeed p051-
tive damping during blading operation is

ym A

and we shall see that it is sufficient.

Let us first note that where
yo < ym)

T2



damping is negative upon release into the wind at amplitude Vo5 in the
case this condition must suffice so that the equation

Un_ Yo _

Yo yo—,-

satisfied in all cases where t —* @, admits another positive root in t,
or else so that

o (ﬁ"_!!fé>2+2c" anot, f.A‘_m_'__fa).-'Ie‘
2n Y 2m Yo/ Yo

opposite

(31)

/61

(32)

It does suffice because it makes the second member of equation (32) positive

and permits expression of the logarithm of its two members.

To use equation (32), it is convenient to specify y by comparing the last

relation in (24) and relation (25), where we find that

o? ca.1¢|.dp(Re)
l

K /<§>-cosel

| /-cosi_,"sihi ~/_

-h°°=c——am’_ bo ~ba’

: . 1__11g>,cd'|¢|'dp(Re)
b U= An cos 0, ‘

| =(Am—dy)-

from which
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CHAPTER 6. COMPARISON WITH EXPERIMENT
CORRESPONDENCE BETWEEN NOTATIONS

With the results obtained during the investigation presented here, it /62
seems possible to interpret the experiments made in the cascade wind tunnel
at Chalais-Meudon by M. Leclerc, Research Engineer at ONERA, and reported in
Recherche Aéronautique, No. 71 (July-August 1959).

Figure 15 shows the cascade's overall configuration.

Figure 16 gives the geometric elements of these experiments and figure 17
gives the same representation with the notations from the study. The table at
the end of this section specifies this correspondence.

Figures 18 and 1§ subsequently specify the er sign whose absolute value is

no other, in the total absence of detachment, than one-half the angle at the
apex of the profile tip:

absolute value of ep ¥ Loy 60
10

// . 7 .
3 Y
[9
l’ /I /’ I, /’ ’

‘Direction of rotation

A 4 e\ ; : -
<&a2; I — .
Y ‘u equivalent

i N TR rotor

Figure 15
t, Pitch; c, chord; h = X, reduced pitch; 6, setting = 459;
c

i, incidence (positive on deceleration cascade as in figure).
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Designation ‘ Theore?ical Experi@ental
notations notations
Relative incident velocity.. w, v
Inclination of Wy on 0y .... | = —m i+3 =2
Inclination of Wo on Oy .... m—) —rEy=—m
. Mean fluid deviation ....... ¢ - —1x e

Profile setting ......eeeee. . 0, 0 =1
Absolute pitch .eveirvvinnns (v , t
Profile chord .eeevieceress cd ¢
Reduced PitCh sereevoronens z | A

Even though approximate, the actual value of ep can be deduced from Z6M
the curves giving the variations of the number of pressure at constant

velocity and variable incidence such as figure 6 on page 61 of Recherche Aéro-
nautique No. T1.

‘6.1 Demonstration of Detachment’

From the expression of the number of pressure

(eleD) |

(e(Gea))

“"Np=1

we derive the value of

. T
cos(Eie)—M .
= V1I—Np

Table 5 and figure 20 give graphic representation of this and show that
the tested blading actually operates in expansion (a2 > al) for values of the

incidence i1 between zero and -150. When incidence is positiVe, the intake and
discharge angles are practically equal, i.e., transition from the configura-
tion in figure 18 to that in figure 19 does not occur, thus indicating that
only negative incidence can validly be considered.

By a scale change, figure 20A shows that when incidence assumes increasing-
1y high values, the difference ¥ ceases to increase with incidence, i.e., the
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-15° -10° -5° +5° i (or m-n/k)
Figure 20
q2.q,deg
- - N . * * . . - ,, - --‘
0o at real zero ° 46 - .
incidence
47 e at zero
incidence of
461 infinitely flat
45 /// profile
-5 +5 i deg
> 04—
J -t
o~
5
/
Figure 20A

localized detachments responsible for introduction of the term in dp(Re).tend

to be generalized and that, simultaneously, any supplementary energy transfer
of fluid to blading occurs in a disordered manner, specifically in a vibratory
form intermediate between the thermal and mechanical forms usable in the

machine shaft.
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6.2 Evaluation of C,

We relate the aerodynamic force to the product of the dynamic bressure {67
by the blade surface :

I &
c,==—-__1129ﬂ5,_

2""73"W‘:'1'Cd
with "

qi-——nl,-\Vlrl-:r'('()SOI, '
e Witsing oW, esin (i)

Y=‘mﬂw_m‘—+' m%ﬁ+e) '
g

from which

o g.T.sn(—e)
o _g.T.sin(i—¢)

€a cOos (:—;— -+ e,) .

[ .

For the application considered,

(t)

- = relative pitch = 0.587 and 6 = Z.
°d u

Table 6 gives the values of C, corresponding to this last formula. Figure

21 gives graphic representation of this and makes it possible to note that for:

*"0,2

0.3

Figure 21
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i

-8° 30, C, is 0.255 theoretically and was measured as 0.240;

i = -6° 30", C, is 0.225 theoretically and was measured as 0.200.

The difference in the two cases is less than 13 percent, i.e., low enough
to confirm the theory developed in the preceding chapters

6.3 Calculation of A, (Wl,i)

A.

B.

C.

We proceed to numerical application of formula (25).

Estimated Weight of a Blade (fig. 18A)

We use 8 for the steel density and consequently

2 :
' ™02
P=\1,7:02+ —8-~—-+1.13-0,1 +20-8

= (0.34 + 0.016 + 0.113) - 160 = 75.04 gram.

Expression of the Compressibility Coefficient as'a Function of
Velocity Wy = 20 with Wy in m/sec.
[¢]

cos? (i + g) —0.5sin%i{ 20 cos? <i - Z—)

M=\ /14 2/ # _ -
cos? <<T + e,) 330 - /2 cos* ¢

am\/z—

20 W. ' ' :
M= ﬁ\/% + cos? <i + g) = 0.0606 * W, * \/0.5 + cos? (i + z—)
‘ . L ‘
VIS M g1 — 0 = 1——0.002w;¢;0.5 + cost(i + Zf)i'
Expression of Dynamic Pressure

. ‘1w 1.225 - 10-3 - 0.587 - 20 - 2.93 - 4 + 10% W,
Ly (T) t W, = 0.981 - 103 . = 171,8 W_‘r g/cmi.
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D. Influence of Incidence in Absence of Deﬁachment

' cos? <i + ). cost ~
cos* m - cos® 0, 4 4 ( 4 1:) 0.5000
= =cos |
4

= =), 90000 i i '_"_)
cosl (4‘ — m) cos' <§ + e,) '- —0.6—2.93’ 1-2626 COs (l + 4 .

E. Influence of Cascade Frequency and Depth

n + 981 cm/s? n+ 981 -2

= 0.02355.

ew? 42931600
This yields in formula (25)
Am—d, v+ W} cos*m-cos?l;, =

Slno)ld = pvl_Mg. COSZ(W —-m) emﬁ'

171,8 W2, - 0,02355 - cos? <i + ’4‘) + 1.2626

éj"‘ —dy _
sinala 000 (1 —0.002) - W, . io,s +eost (i + ;_x
- Wi _
%;’;1-5?“—006807 cos’( +I> ‘ ) -
V 1 —0.002 Wi,; 0.5 + cos? (i + 4> i

F. 1Influence of Fluid Passage Interval Through the Cascade
co_ o0 298-40-2% - V2cos(y—m)
._Wm 2000 - Wy, \/cos’(¢—m)+cos“m—055m’

rad.

In conclusmn, and since x is a coefficient of adjustment to be determined
experimentally -

é1'--—«1‘,+006807 cos’(t + 4) We, . 8in O,
. (1 — 0,002 W* )305+cos’(l+ )2

o V2cos—m 10.3632
Vcos? ($ — m) + cos* m — 0.5 sin? { W,
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6.4 TInfluence of Detachment on the Damping Coefficient

This can be demonstrated by expressing the Napieran logarithm a, of. two
consecutive amplitudes which is the measured magnitude, that is

, . - A s 2
, [2r)ot | - {Ap/rc)cot
| e-—(Am ) <2T; J0>+J0 + e{Anm,

yu,. +1 ; e—~(Ami2Zr)olt+ (1/Ng)] « (Am .joo> l]mt | e—(A,,.IZn)w[H(\IN,))

2 Yo

g (g‘% - y_°°> + Yo (ami2m)at 22 +1

.._‘I.I_M"_. -_-_- eAm Yo o ,
' Uwnsr ! 3(5—",_&) + .;no eAm[(wllzﬂ)“] g +1
S ]

2n Yo

| '- ;(A_m__liag> Yo pam + eams ,2’
. 1 1+ 2% Ys +y0 ¢ 'eA ”

°’»u=Am—'2‘L08 Am 2
‘ Yo -
' ! +;<2—"; '/o)+yo ¢ "'N%

(34)

‘The value of t, for which a§ is cancelled, is the root of the equation /70

R O (35)

Yo \Jo 2 7‘)

eAm'Npp =

‘

y B
and can be specified, provided we know ;f as a function of W,, i.e., dp(Re).
By _ 5

A. THowever, on the hypothesis that the time elapsed between the instant
of release into the wind and the instant of measurement of oy, is constant for

all éxperiments, we can find directly the essential of the configuration of the
curves av(w) shown in Recherche Adronsutique No. Tl. We assume only that

(9 ‘Qz)ﬂ varies little with Re and that - is sufficiently large in relation to
z /<§> Yo
A, so that we can neglect ——., We then have

oxn
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1 Cte

CAMNDd Ay - = —0
_2)2 qﬂ ’
Yo

.which gives the equation of a stability curve separating the plane W, Q into

two regions

W = W,— Wz log 4;."

Am is actually roughly proportional to W when ® is sufficiently small, which is
the case at velocities cancelling out Q- Within one of these regions, damping

is positive (stability), and within the other it is negative (instability). To
determine this curve we use:

(1) W=285m/sec and ¥ = 15 + 6 = 21°, a case of cancellation of Qy ac-

tually observed at Chalais-Meudon, but not referred to in Recherche Adronauti-
que No. T1. ' :

(2) W=65m/sec and ¥ = 17.7 + 6 = 23.7°, the case referred to in figure
11 of the Leclerc communication (R. A., No. 71); hence the numerical expression
of W : ) -

, 1 L. "
W= 0.05%5 (30‘,.91'-— 20 log ¢),
which gives -

W=72m/s 1if g = 22,79

These values actually correspond to the other cancellation point of o, plotted
in thé same figure. Admitting that dp(Re) retains the same value although W
varies, this very simple formula shows that W should exceed 120 m/sec under [T1

the same experimental conditions so that a, is cancelled when incidence drops
to 10.7° (from which ¢ = 16.7°).

B. Actually, dp(Re) can have a more precise definition by classical con-

cepts. Turbulence appears in the ducts when the Reynolds number reaches a so-
called "critical" value between 1,000 and 10,000 and we formulate a probable
supplementary hypothesis by using

. dp (Re Re -
P(l _)_ —_ A'_.log_l‘,o_i
/)
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with

L = cos 9
‘W, o o ey T COSU
, Re=m’ [.Lm Cd"‘;d Cd‘r =I{P-'W:cop
, EJ—}—-c—d"COSOl .
. l = . 20
O Wnea a0 % 4000.203 203 0587-07071
e LT s, OB 20 e oot
ca Tcqg 98N ﬁl§+ 087 - 0.7071 .
Kp = 9,016 - 104+ 0,3913 = 3,528 - 104,
Determination of A, results from formula (33) after we calculate = on the
Yo

basis of equation (35), in which we have established the difference of time
elapsed between the instant of blade release into vibration and the instant of
measuring the damping coefficient, that is

Yo _ \/_1_ (36)
YoV eamnpe *

Table T gives Ap for a 159 incidence for which we used an experimental adjust-

ment coefficient from formula (25) equal to 1/6.

Finally, assuming t equal to 5 sec *(a new and very probable calculation
" hypothesis) and by writing that the coefficient a, is zero when the incident

velocity is 85 m/sec and incidence is equal to 15°, we find

Ap - Npa = 200 - 0.01875 = 3.75,

o= \/E}ﬁ = 01535,

from which

’ -—-_y_d_)o___—‘_—.l___._— : . z 1

BTy Ty e = 0199 0 o

cos 0, 8 104 0,7071 8
A _ 01535
1519 01,1760

dp (Re | ' |

J;-él—)« — 0.08593 - log | 3.528 W, |. (37)
2) '
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It is therefore assumed that the experimental resulis to be compared [T2
on these bases actually are comparable, i.e., that the amplitude of release

into the wind f(%) did not vary during the experiments and that the measurement

.was always carried out at the same point on the blade.

TABLE 7. EVOLUTION OF A, IF W VARIES AND THE INCIDENCE IS -1507

m =i+ % =150 + 450 = 300;

V2 cos (§ — m) = 1,414 - 0.6293 = 0.8898;

—4;+m.=¢:=51°; q;=——i+c,=210v

T

0.5 + cos’ (i + -4-> = 1,2500

\/cos' (¢ — m) + cos* m — 0.5 sin® ¢ = 1.040;
0,6807 + cos? (l +

k3

0.06807 * 0.75 = 0,05105

3=
o — 0:8808 - 03682 _ 03150 ., 1
1,030+ W, Wz, 6
Wa, 2 .3 : 4 4,25
O tiiririieeeinenns e . 0,1575' 0,1050 0,07875 | 0,07412
SINO coviernnnneriennne, e 0,1567 0,1048 0,07875 | 0,07412
1—1,250 0,002 W2 ....ounennun 0,9900*— 0,9776 . 0,9600 0,548
W2, ettt 4 e .| 16 18,0625
A—J‘ e e 0,03183 | 0,04878 0,06658 0,67125
Am e e 0,005305 |- 0,008130 | 0,01110 | 0,01875

C. The trace of the curve representing the variations of a, as a function

of W is then satisfactorily determined by formula (34) and was plotted in fig-
ure 22 by means of table 8. The similarity of the theoretical curve to the
experimental curve is certain, specifically near the point of cancellation
which served to determine the value of Ar. The relation with the experimental

curves determined at the 16.7° and 17.7° incidences was investigated in A and

does not call for any other comment since the general trend of the respective
curves is also very similar to that of the theoretical curve.
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TABLE 8. EVOLUTION OF a,, WHEN W VARTES, INCIDENCE IS -15°,

AND DELAY IN MEASURING o, Is 5 SEC.

ch -2 3 4

3,528 Wz, tuuveniinnrineeaneneann, 7,056 10,584 14,112
108 } 3,528 * W, | veuveervnnnnnennn.. 0,84856 1,02449 1,14953
ap “I‘e’ TR e 0,07292 0,08799 0,09873
/(2)

ol '
ca-lol oo e eneere e, Ao 1,519 1,519 1,519
cos 0,
-”7“- ..... e tee et 0,1107 0,1336 . 0,1500
[} .
200 Am cvvnnnns ceeren e rrreerens 1,061 1,626 2,222
€200Am (1 4 Am) +evernnnsereenaennes 2,904 5,125 9,327
ly? €200am (1 + Am) — 1} ........ ..|  0,2108 0,5512 1,249

(1]
Num. | e200am — 1} ...... cereniieeed] 1,004 1,304 ° 2,559
%‘Eaezoom_.x [ veineeiiiininnenns 0,2092 0,5458 1,234

]
R R 1,004 1,298 2,521
—2a0—Am) .1iurrnn.s e b treeneian. 1,000 1,005 1,015
DY € TR N P S | 0,005 0,015
@ Am +ieierieriiiiiieniieiineel| 0 0,0025 0,0075 -
O 4t sesnsonnentsscntsontonstienes 0,0056 0,0036
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Figure 22

---, Experimental curves.

D. It remains to be shown that, at slight incidence and under the {7h
same experimental conditions, the researchers were not able to note zero
values of a, (fig. 22).

For this, we apply the same formula (25) for i = -11° with the same coef-
ficient of adjustment of 1/6. Table 9 then furnishes the elements of the trace
of a curve av(w) characteristic of a difference of time practically zero be~

tween the instant of release and the instant of measure. The similarity of
this curve with the experimental curves determined for incidences of 10.7° and
13.7° is obvious. To take into account the delay of 5 sec in the measurement
of o, we can initially determine the value of W which cancels the expression of
ay given by formula (3L4) if we have

Equation (35)




TABLE 9. EVOLUTION OF Ay IF W VARIES AND THE INCIDENCE IS -11°,

— ¢ +m =« = 51°

V2 - cos (§ —m) = 1,414 - 0.6293 = 0.8898:

m=i4 &=—

Vcost (§ —m) + cos® m — 0.5 sin¥§ = 1,019;
0.06807 + cos® (i + g) = 0.06807 * 0.6872 = 0.04678

11 4- 45 = 349;

$=—1i+4 ¢ =170

0.5 + cos? (i + ;) = 1.1872

o — 0889803682 03214, | 1
- 1.019 * VV:‘:° - W:,'o ’ - 6
Wi, 2 3 4 65
0.. Ceevaectesetsnsserareas 0,1607 0,1074 0,0803 0,0493
SINO .ovveiinvninnns Ceeereenean 0,1599 | 0,1072 0,0803 0,0493
1 -—,1,187 - 0,002 W;, et e 0,9903 0,9781 0,9606 - 0,8990
Wi coens . Ceverees 4 -9 16 42,25
% Cerenenens . 0,02972 | 0,04564 0,06211 0,10839
Amn ..ol vecrsscenn cernasees 0,004953 0,007607' 0,01035 0,01806
or, in the case investigated earlier
: .
£200.0,01876 — 0.1535

becomes, by linearizing the variation of Am given in table 9 on the basié

[15

of the pair (W, = b, A = 0.01035) and by teking into consideration formulas

(33) and (37)

or

e

200-

1
I (055 555
125
7425 Wy, = 0658 (

88

0,2967 )2 . <O.54753 +

0.5475 + log W,
T,

1,176

log w,,>=
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TABLE 10. EVOLUTION QOF a,, WHEN W VARIES, INCIDENCE IS -11° AND

DELAY IN MEASURING a, IS 5 SEC.

Wi, : 3 4 6.5

3,528 Wiz, vverrnnnirernneeeennnn. 10,584 14,112 22,932
108 } 3,528 * Wi, { «ovvvnrnenneennnnn, 11,02449 1,14953 1,36040
4”<5¥9 cereeaas e 10,08799 0,09873 0,11690
1(3) |
ca-lvl e N 1,229 1,229 1,220
cos 0, .
L S 0,1082 |- 0,1214 " 0,1437
Yo ' .

200 Am evenininiiiii i . 11,5214 - 2,0700 3,612
€200Am (1 + Am) «vvevvnsns 4,614 8,004 37,86
%‘i | €200am (1 + Am) — 1] +v0vvnnnns 0,3910 0,8502 5,296

[ ] .
Num. | e=2(a—am | ......... e 1,1528 | 1,7228 29,05
-*!’I—”- S B e 0,3870 . | - 0,8406 5,200
. v

Den. } e=2@—AmV} o\ \oiiiiniiin.nns. 1,1497 | 11,7066 © 28,04
e—2ao—Am) ..,.... e 1,002 . | 1,0094 1,036
2 (00 ——Am) eerreirnninn.. e — 0,002 — 0,0004 | — 0,0354
D ceene.| — 0,001 — 0,0047 | — 0,01770
@0 v erueranteennennnsnns e 0,0066 0,00565 0,00036




TABLE 11. EVOLUTION OF «,, WHEN W VARIES, INCIDENCE IS -11° AND

DELAY IN MEASURING a,, IS 2.5 SEC.

Wi, ': 4 6,5

3,528 Wz, ..onnenns Ceeienn PP 10,584 14,112 22,932
log | 3,528 * Wi, { ...... Cereeeren ~ 10244; 1,14953 | . 1,36040
d (1) 0,08799 0,09873 0,11690

/() |

cc‘i)ls“(;—l' e e 1,220 - 1,229 1,229
%? ............. 0,1082 0,1214 0,1437
100 Am voerrrnnnnns s e, 0,7607 1,035 1,806
€100Am (1 + Am) 2,157 2,843 6,196
%:izewmm U+ Am—1f i 0,1252 10,2237 0,7466
Num. | e=2@e—Am) |, 0vevrureneeennn. 1,016 1,050 ; 1,557
%’? (e100Am — 1] ........ e .0,1233' 0,2203 0,7309
Den. } e—2ao—am | ...\ui..... e 1,015 1,048 1,534
P v e 1,001 1,002 1,015
2(a.,—A,,.)........-;.... ...... o] — 0,001 — 0,002 | — 0,0149
@y — Am ..... eeeiins] — 0,0005 | — 10,001 — 0,00745
B treerernsniniiiinieen) 0,007 0,0093 | 0,01141
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This equation consequently admits a root in Wx between 7.3 and 7.4 and

thus confirms the result announced in A. At an incidence of 11°, it would
have been necessary to raise the velocity of the wind tunnel up to 150 m/sec
t0 be able to oObserve zero values of ay 5 sec after the start of the experi-

ment. Moreover, when we use

N,.¢ = 200,

table 10 derived from application of formula (34) on the basis of table 9

makes it possible to plot a new curve (fig. 22) which indicates an apparent [Zﬁ
residual damping of 6 %o at 85 m/sec and an incidence of 11° 5' after the
start of the experiment.

Table 11 shows the elements of the trace of a curve av(w) for an incidence
of 11° and the observations are made only 2.5 sec after the start of the experi-

ment and at the velocity of 85 m/sec and thus shows that the coefficient o con-
tinues to increase with W under these conditioms. v

6.5 -Localization of Detachment

From the observations made at Chalais-Meudon at the veloéity of 85 m/sec
and reported in Recherche Aéronsutique No. 71 (fig. 6, p. 61), it is possible
to confirm the hypotheses made for developing formula (15) by localizing the
detachments which this formula is intended to take into account numerically.

In order to follow the experimental evolution of dp(Re), we can utilize
figure 23 which graphically represents the last line of table 5. Behavior dur-

ing expansion without detachment from the extrados as shown in figure 18 cor-
responds to an effective value of m - ¥ greater than 459, that is

(m — §); = 450 4 60 = 51o,

By designating the difference by e, as in formula (15')

ep = (m——¢)—<§—+ e,)-_- 60— ¢f,

we obtain a function of i (or V) represented by figure 23 from which we can
deduce dp(Re). Actually, the difference between the pseudo-amplitude of the
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e _ deg

—

i deg

Figure 23

oscillétion of the fluid and the pseudo-amplitude of the oscillation of the

dp (Re)

blade represented by (coso
1

)-cd.|¢| is given by formula (15')

Caaey =ca|§]+dp (Re)

whereas in the interval (-150 —lOO) and from figure 23, we can utilize

Cd
ep deg =10 |¢| deg = »——-&I&ﬂ'—l dp (Re),
from which
5.5 a
4y (Re) = 5"

end finally from formulas (33) -and (37)

: -—5-—5-1— 4 0,08593 - log | 3.528 - 4.251,
10 - ;(—) ca
2
—Jd_ 08593 - 2.93 - 1.176
N = ~ 0.5,
\3) 55

. We see that the localized detachment

responsible, in the case of vibrations

at frequencies close to the natural frequency, for cancelling out aerodynamic
damping takes place at a distance from the profile tip which is of the same
order of magnitude as the initial amplitude at mid-height of the blade.
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We now understand that the investigators:

(a) recognized on the one hand the existence on the extrados "of a
detached zone of laminar regime followed by a turbulent zone slowly moving
back toward the trailing edge when the incidence increases, and subsequently
a detachment near the trailing edge by reason of the insufficiently progres-
sive tip of the profile;" '

(b) eand considered on the other hand as valid the hypothesis of steady
flow around the vibrating wvanes: the oscillation of the detached zone, either
on one of the faces of the profile or, at high incidence, on both sides of the
tip, is localized along a band less than 1 mm wide which makes it impercepti-
ble; its exciting effect is nevertheless sufficient to indefinitely maintain
the vibrations of the blading at a very low level. It should moreover be pos-
sible to explain the "self-excited" vibrations described in reference 1 by
the same process.

6.6 Phase Shift Between Blades and Influence of Relative Pitch

Since the number of vanes for the calculation step is 12, the formuletion
of equations (19) in Chapter U4 (Sect. 4) assumes a minimum phase shift of

360 ,~0
=30

or a multiple of this minimum phase shift. The experimental value of 60° does
not disagree with these considerations.

Failure to develop a bending flutter with the relative pitch 1.17 and f80
2.35, multiples of the pitch 0.587 introduced in the calculation of Am '

developed previously, would seem unexplainable on the other hand if it were not
replaced, at high incidence, by a torsional flutter. We should remember in

‘explanation of this phenomenon that

(a) the aerodynamic force Fy given by formula (13A) is proportional to the
relative pitch, since the circulation vy is itself proportional to 1, the quo-

tient & itself being independent of 7;
T N

(b) the aerodynamic force is applied at the point determined by the form
of the profile and not exclusively by the velocity diagram.

It is therefore probable that, by increasing the load of the blade with
the relative pitch, we increase the torsional moment to the point of con-
verting instability due to bending flutter into an instability due to torsional

w0
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flutter., The origin of the torsional instability would be the same and could
be specified by formulas analogous to those previously deduced, e.g., by the
application of the second Blasius formula. ‘

6.7 Real Frequency, of Vibration

Finally, the sharp division between the bending modes (frequency of L0
cps) and the torsional mode (frequency of 663 cps) stresses the interest of
investigations on the damping of vibrations in pure flexure. The fact that
the vibratory frequency measured was very close to the natural frequency agrees
with the preceding results, specifically those of Section 1 of Chapter 5.
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